in

Planktonic foraminifera genomic variations reflect paleoceanographic changes in the Arctic: evidence from sedimentary ancient DNA

  • 1.

    Berger, W. H. & Parker, F. L. Diversity of planktonic foraminifera in deep-sea sediments. Science 186, 1345–1347 (1970).

    ADS  Google Scholar 

  • 2.

    Sadatzki, H. et al. Sea-ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Sci. Adv. 5, eaau6174 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Rasmussen, T. L., Thomsen, E. & Moros, M. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate. Sci. Rep. 6, 20535 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic Water. Science 331, 450–453 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Schiebel, R. & Hemleben, C. Planktic foraminifers in the modern ocean (Springer, Berlin, 2017).

    Google Scholar 

  • 6.

    Darling, K. F. et al. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405, 43–47 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Darling, K. F. & Wade, C. M. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar. Micropaleontol. 67, 216–238 (2008).

    ADS  Google Scholar 

  • 8.

    Darling, K. F., Kucera, M., Pudsey, C. J. & Wade, C. M. Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. PNAS 101, 7657–7662 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    De Vargas, C., Bonzon, M., Rees, N. W., Pawlowski, J. & Zaninetti, L. A molecular approach to biodiversity and biogeography in the planktonic foraminifer Globigerinella siphonifera (d’Orbigny). Mar. Micropaleontol. 45, 101–116 (2002).

    ADS  Google Scholar 

  • 10.

    Morard, R. et al. Morpological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Mar. Micropaleontol. 71, 148–165 (2009).

    ADS  Google Scholar 

  • 11.

    Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Res. 15, 1472–1485 (2015).

    CAS  Google Scholar 

  • 12.

    Weber, A.-T. & Pawlowski, J. Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS ONE 8, e56739 (2014).

    ADS  Google Scholar 

  • 13.

    Morard, R. et al. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci. Rep. 8, 2539 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Morard, R., Vollmar, N. M., Greco, M. & Kucera, M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS ONE 14, e0213936 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Morard, R. et al. Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology. Biogeosciences 14, 2741 (2017).

    ADS  CAS  Google Scholar 

  • 16.

    Boere, A. C., Rijpstra, W. I. C., De Lange, G. J., Sinnighe Damsté, J. S. & Coolen, M. J. L. Preservation potential of ancient plankton DNA in Pleistocene marine sediments. Geobiol 9, 377–393 (2011).

    CAS  Google Scholar 

  • 17.

    Coolen, M. J. L. 7000 years of Emiliania Huxleyi Viruses in the Black Sea. Science 333, 451–452 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Lejzerowicz, F. et al. Ancient DNA complements microfossil recorde in deep-sea subsurface sediments. Biol. Lett. 9, 20130283 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Kirkpatrick, J. B., Walsh, E. A. & D’Hondt, S. Fossil DNA persisntence and decay in marine sediment over hundred-thousand-year to million-year time scales. Geology 44, 615–618 (2016).

    ADS  CAS  Google Scholar 

  • 20.

    Orsi, W. D. et al. Climate oscillations reflected within the microbiome of Arabian Sea sediments. Sci. Rep. 7, 6040 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 21.

    More, K. D., Giosan, L., Grice, K. & Coolen, M. J. Holocene paleodepositional changes reflected in the sedimentary microbiome of the Black Sea. Geobiology 7, 436–448. https://doi.org/10.1111/gbi.12338 (2019).

    Article  Google Scholar 

  • 22.

    Coolen, M. J. L. et al. Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. PNAS 110, 8609–8614 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    De Schepper, S. et al. The potential of sedimentary ancient DNA for reconstructing past sea-ice evolution. ISME J. 13, 2566–2577 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Pawłowska, J. et al. Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last millennium. Geobiology 12, 277–288 (2014).

    PubMed  Google Scholar 

  • 25.

    Pawłowska, J. et al. Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA. Clim. Past 12, 1459–1472 (2016).

    Google Scholar 

  • 26.

    Kucera, M., Rosell-Mele, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 24, 951–998 (2005).

    ADS  Google Scholar 

  • 27.

    Pflaumann, U., Duprat, J., Pujol, C. & Labeyrie, L. D. SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11, 15–35 (1996).

    ADS  Google Scholar 

  • 28.

    Bauch, H. A. & Kandiano, E. S. Evidence for early warming and cooling in North Atlantic surface waters during the last interglacial. Paleoceanogr. Paleocl. 22, PA1201 (2007).

    ADS  Google Scholar 

  • 29.

    Metcalfe, B., Feldmeijer, W. & Ganssen, G. M. Oxygen isotope variability of planktonic foraminifera provide clues to past upper ocean seasonal variability. Paleoceanogr. Paleocl. 34, 374–393 (2019).

    Google Scholar 

  • 30.

    Sarnthein, M., Pflaumann, U. & Weinelt, M. Past extent of sea-ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography 18, 1047. https://doi.org/10.1029/2002PA000771 (2003).

    ADS  Article  Google Scholar 

  • 31.

    El Bani Altuna, N., Pieńkowski, A. J., Eynaud, F. & Thiessen, R. The morphotypes of Neogloboquadrina pachyderma: Isotopic signature and distribution patterns in the Canadian Arctic Archipelago and adjacent regions. Mar. Micropaleontol. 142, 13–24 (2018).

    ADS  Google Scholar 

  • 32.

    Darling, K. F., Kucera, M. & Wade, C. M. Global molecular phylogeography reveals persistent Arctic circumpolar isolation in a marine planktonic protist. PNAS 104, 5002–5007 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Greco, M., Jonkers, L., Kretschmer, K., Bijma, J. & Kucera, M. Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations. Biogeosciences 16, 3425–3437 (2019).

    ADS  CAS  Google Scholar 

  • 34.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Callahan, B., McMurdie, P. & Holmes, S. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Apotheloz-Perret-Gentil, L. Diversity of Foraminifera and applications of protist metabarcoding in bioindication: focus on freshwater environment. PhD Thesis, University of Geneva, no. Sc. 5087 (2017).

  • 37.

    Decelle, J., Romac, S., Sasaki, E., Not, F. & Mahé, F. Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (radiolarians) assessed by high-throughput sequencing. PLoS ONE 9, e104297 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Gong, J., Dong, J., Liu, X. & Massana, R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164, 369–379 (2013).

    CAS  PubMed  Google Scholar 

  • 39.

    Andreasen, K. & Baldwin, B. G. Nuclear ribosomal DNA sequence polymorphism and hybridization in checker mallows (Sidalcea, Malvaceae). Mol. Phylogenet. Evol. 29, 563–581 (2003).

    CAS  PubMed  Google Scholar 

  • 40.

    Pillet, L., Fontaine, D. & Pawlowski, J. Intra-genomic ribosomal polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in foraminifera. PLoS ONE 7, e32373 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Gasson, E. G. W. et al. Numerical simulations of a kilometer-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun. 9, 1510 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Rohling, E. J. et al. Differences between the lst two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28 (2017).

    ADS  Google Scholar 

  • 43.

    Chauhan, T., Rasmussen, T. L., Noormets, R., Jakobsson, M. & Hogan, K. A. Glacial history and paleoceanography of the southern Yermak Plateau since 132 ka BP. Quat. Sci. Rev. 92, 155–169 (2014).

    Google Scholar 

  • 44.

    Wollenburg, J. E., Knies, J. & Mackensen, A. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Paleogeogr. Paleoclimatol. Palaeoecol. 204, 209–238 (2004).

    ADS  Google Scholar 

  • 45.

    Kremer, A. et al. Changes in sea-ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka – Reconstruction from biomarker records. Quat. Sci. Rev. 182, 93–108 (2018).

    ADS  Google Scholar 

  • 46.

    Wollenburg, J. E., Kuhnt, W. & Mackensen, A. Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: the benthic foraminiferal record. Paleoceanography 16, 65–77 (2001).

    ADS  Google Scholar 

  • 47.

    Bauch, H. A. Interglacial climates and Atlantic meridional overturning circulation: is there an Arctic controversy?. Quat. Sci. Rev. 63, 1–22 (2013).

    ADS  Google Scholar 

  • 48.

    Stein, R., Fahl, K., Gierz, P., Niessen, F. & Lohmann, G. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat. Commun. 8, 373 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Belt, S. T. What do IP25 and related biomarkers really reveal about sea ice change?. Quat. Sci. Rev. 204, 216–219 (2019).

    ADS  Google Scholar 

  • 50.

    Rontani, J. F., Smik, L. & Belt, S. Autoxidation of the sea ice biomarker proxy IPSO25 in the near-surface oxic layers of Arctic and Antarctic sediments. Org. Geochem. 129, 63–79 (2019).

    CAS  Google Scholar 

  • 51.

    Müller, J., Masse, G., Stein, R. & Belt, S. T. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat. Geosci. 2, 772–776 (2009).

    ADS  Google Scholar 

  • 52.

    Rasmussen, T. L. et al. The Faroe-Shetland gateway: late Quaternary water mass exchange between the Nordic Seas and the eastern Atlantic. Mar. Geol. 188, 165–192 (2002).

    ADS  CAS  Google Scholar 

  • 53.

    Parks, M. M. et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci. Adv. 4, eaao0665 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Rudels, B. & Quadfasel, D. Convection and deep water formation in the Arctic Ocean-Greenland Sea System. J. Mar. Syst. 2, 435–450 (1991).

    Google Scholar 

  • 55.

    Rudels, B., Fahrbach, E., Meincke, J., Budéus, G. & Eriksson, P. The East greenland currents and its contribution to the Denmark Strait overflow. ICES J. Mar. Sci. 59, 1133–1154 (2002).

    Google Scholar 

  • 56.

    Aagard, K. Inflow from the Atlantic Ocean to the polar basin. In: Rey, L. (Ed.) The Arctic Ocean (Comité Arctique International, Monaco, 69–82, 1982).

  • 57.

    Rudels, B. et al. Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997. Ann. Geophys. 18, 687–705 (2000).

    ADS  CAS  Google Scholar 

  • 58.

    West, G. et al. Amino acid racemization in Quaternary foraminifera from the Yermak Plateau. Geochronology 1, 1–14 (2019).

    Google Scholar 

  • 59.

    Wiers, S., Snowball, I., O’Reagan, M. & Almqvist, B. Late Pleistocene chronology of sediments from the Yermak Plateau and uncertainty in dating based on geomagnetic excursions. Geochem. Geophys. Geosys. 20, 3289–3310. https://doi.org/10.1029/2018GC007920 (2019).

    ADS  Article  Google Scholar 

  • 60.

    Spielhagen, R. F. et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat. Sci. Rev. 23, 1455–1483 (2004).

    ADS  Google Scholar 

  • 61.

    Haake, F. W. & Pfalumann, U. Late Pleistocene foraminiferal stratigraphy on the Vøring plateau, Norwegian Sea. Boreas 18, 343–356 (1989).

    Google Scholar 

  • 62.

    Pawlowski, J. & Lecroq, B. Short rDNA barcodes for species identification in Foraminifera. J. Eukaryot. Microbiol. 57, 197–205 (2010).

    CAS  PubMed  Google Scholar 

  • 63.

    Dufresne, Y., Lejzerowicz, F., Apotheloz Perret-Gentil, L., Pawlowski, J. & Cordier, T. SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data. BMC Bioinform. 20, 88 (2019).

    Google Scholar 

  • 64.

    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    CAS  PubMed  Google Scholar 

  • 65.

    Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 1–10 (2003).

    Google Scholar 

  • 66.

    Lisiecki, L.E. & Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanogr 20, PA1003 (2005).

  • 67.

    Lü, X. X. et al. Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as paleotemperature proxy for mid-to-low latitude marginal seas. Org. Geochem. 89–90, 31–43 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Effectiveness of protected areas in conserving tropical forest birds

    Did our early ancestors boil their food in hot springs?