Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).
Smith-Downey, N. V., Sunderland, E. M. & Jacob, D. J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J. Geophys. Res. 115, G03008 (2010).
Zimov, S. A. et al. Permafrost carbon: Stock and decomposability of a globally significant carbon pool. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL027484 (2006).
Romanovsky, V., Grosse, G. & Marchenko, S. Past, present and future of permafrost in a changing world. Geo. Soc. Am. 40, 397 (2008).
Biskaborn et al. Permafrost is warming at a global scale. Nat. Comm. 10, 264 (2019).
Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. V26, 1887–1900 (2013).
McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115/15, 3882–3887 (2018).
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).
Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).
Skyllberg, U., Bloom, P. R., Qian, J., Lin, C. M. & Bleam, W. F. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 40, 4174–4180 (2006).
Giesler, R., Clemmensen, K. E., Wardle, D. A., Klaminder, J. & Bindler, R. Boreal forests sequester large amounts of mercury over millennial time scales in the absence of wildfire. Environ. Sci. Technol. 51, 2621–2627 (2017).
Arnold, J., Gustin, M. S. & Weisberg, P. J. Evidence for nonstomatal uptake of Hg by Aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environ. Sci. Technol. 52, 1174–1182 (2018).
Clackett, S. P., Porter, T. J. & Lehnherr, I. 400-year record of atmospheric mercury from tree-rings in Northwestern Canada. Environ. Sci. Technol. 52, 9625–9633 (2018).
Lindberg, S. E., Hanson, P. J., Meyers, T. P. & Kim, K. H. Air/surface exchange of mercury vapor over forests – the need for a reassessment of continental biogenic emissions. Atm. Environ. 32, 895–908 (1998).
Jiskra, M. et al. Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ. Sci. Technol. 49, 7188–7196 (2015).
Schuster, P. F. et al. Mercury export from the Yukon River Basin and potential response to a changing climate. Environ. Sci. Technol. 45, 9262–9267 (2011).
Schaefer, K. et al. Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model. J. Geophys. Res. 113, G03034 (2008).
Olson, C., Jiskra, M., Biester, H., Chow, J. & Obrist, D. Mercury in active-layer Tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Glob. Biogeochemical Cycles 32, 1058–1073 (2018).
Mikan, C. J., Schimel, J. P. & Doyle, A. P. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol. Biochem. 34, 1785–1795 (2002).
Wang, Z. & Roulet, N. Comparison of plant litter and peat decomposition changes with permafrost thaw in a subarctic peatland. Plant Soil 417, 197–216 (2017).
Wickland, K. P. et al. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ. Res. Lett. 13, 065011 (2018).
Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32, L21413 (2005).
Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).
Holmes, C. D. et al. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 10, 12037–12057 (2010).
Pacyna, J. M. et al. Current and future levels of mercury atmospheric pollution on a global scale. Atmos. Chem. Phys. 16, 12495–12511 (2016).
Schaefer, K., Zhang, T., Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B Chem. Phys. Met. https://doi.org/10.1111/j1600-0889201100527x (2011).
St Pierre, K. A. et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian arctic. Environ. Sci. Technol. 52, 14099–14109 (2018).
EPA. Ambient water quality criteria for mercury. U.S. Environmental Protection Agency, 440/5-84-026 (https://www.epa.gov/sites/production/files/2019-03/documents/ambient-wqc-mercury-1984.pdf) (1984).
Brumbaugh, W. G., Krabbenhoft, D. P., Helsel, D. R., Wiener, J. G., & Echols, K. R. A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients: bioaccumulation in fish, Biological Science Report. USGS/BRD/BSR-2001-0009 (2001).
Scudder, E. et al. Optimizing fish sampling for fish-mercury bioaccumulation factors. Chemosphere 135, 467–473 (2015).
National Research Council. Toxicological effects of methylmercury. https://doi.org/10.17226/9899 (The National Academies Press, Washington, DC, 2000).
Borum, D., Manibusan, M. K., Schoeny, R., Winchester, E. L. Water quality criterion for the protection of human health: methylmercury. EPA-823-R-01-001 (U.S. Environmental Protection Agency, Washington, DC 20460, 2001).
Schaefer, K. et al. Improving simulated soil temperatures and soil freeze/thaw at high-latitude regions in the Simple Biosphere/Carnegie-Ames-Stanford Approach model. J. Geophys. Res. 114, F02021 (2009).
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Env. Res. Lett. 9, 085003 (2014).
Schaefer, K. & Jafarov, E. A parameterization of respiration in frozen soils based on substrate availability. Biogeosciences 13, 1991–2001. www.biogeosciences.net/13/1991/2016/ (2016).
Jafarov, E. & Schaefer, K. The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics. Cryosphere 10, 465–475 (2016).
USGS, United States Geological Survey. Data inventory page for site 15565447-Yukon River at Pilot Station, Alaska. U.S. Geological Survey, https://waterdata.usgs.gov/nwis/inventory/site_no=15565447 (2019).
Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C. & Obrist, D. New constraints on terrestrial surface atmosphere fluxes of gaseous elemental mercury using a global database. Environ. Sci. Technol. 50, 507–524 (2016).
Source: Ecology - nature.com