in

Rhizobacterial species richness improves sorghum growth and soil nutrient synergism in a nutrient-poor greenhouse soil

  • 1.

    Liu, Z. et al. Effect of simulated acid rain on soil CO2, CH4 and N2O emissions and microbial communities in an agricultural soil. Geoderma 366, 114222 (2020).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Li, M. et al. Biochemical response, histopathological change and DNA damage in earthworm (Eisenia fetida) exposed to sulfentrazone herbicide. Ecol. Indic. 115, 106465 (2020).

    CAS  Article  Google Scholar 

  • 3.

    Zhang, Q., Saleem, M. & Wang, C. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione. Sci. Total Environ. 671, 52–58 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Wu, Y. et al. Ecological clusters based on responses of soil microbial phylotypes to precipitation explain ecosystem functions. Soil Biol. Biochem. 142, 107717 (2020).

    CAS  Article  Google Scholar 

  • 5.

    Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 6.1-6.24 (2019).

    Article  Google Scholar 

  • 6.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Saleem, M. Ecoevolutionary processes regulating microbiome community assembly in a changing global ecosystem. In Microbiome Community Ecology: Fundamentals and Applications (ed. Saleem, M.) 55–87 (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-11665-5_3.

    Google Scholar 

  • 8.

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Micro. 5, 384–392 (2007).

    CAS  Article  Google Scholar 

  • 10.

    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Bashan, Y., Bashan, L. E., Prabhu, S. R. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33 (2013).

    Article  CAS  Google Scholar 

  • 12.

    Sun, T., Li, M., Saleem, M., Zhang, X. & Zhang, Q. The fungicide “fluopyram” promotes pepper growth by increasing the abundance of P-solubilizing and N-fixing bacteria. Ecotoxicol. Environ. Saf. 188, 109947 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 13.

    Dimkpa, C., Weinand, T. & Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32, 1682–1694 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Sun, T. et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J. Hazard. Mater. 398, 122941 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. 109, 1159–1164 (2012).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Hu, J. et al. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 113, 122–129 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Woo, S. L. & Pepe, O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1801 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).

    ADS  CAS  Article  Google Scholar 

  • 20.

    USDA. Sorghum Production by Country | World Agricultural Production 2019/2020. https://www.worldagriculturalproduction.com/crops/sorghum.aspxhttps://www.worldagriculturalproduction.com/crops/sorghum.aspx (2019).

  • 21.

    Zhao, Z.-Y., Che, P., Glassman, K. & Albertsen, M. Nutritionally enhanced sorghum for the arid and semiarid tropical areas of Africa. In Sorghum: Methods and Protocols (eds Zhao, Z.-Y. & Dahlberg, J.) 197–207 (Springer, Berlin, 2019).

    Google Scholar 

  • 22.

    Schlemper, T. R. et al. Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol. Ecol https://doi.org/10.1093/femsec/fix096/4002672 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. 115, E4284–E4293 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Hara, S. et al. Identification of nitrogen-fixing bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Front. Microbiol. 10, 407 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Idris, H. A., Labuschagne, N. & Korsten, L. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol. Control 40, 97–106 (2007).

    Article  Google Scholar 

  • 26.

    Idris, A., Labuschagne, N. & Korsten, L. Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J. Agric. Sci. 147, 17–30 (2009).

    CAS  Article  Google Scholar 

  • 27.

    Kort, J., Collins, M. & Ditsch, D. A review of soil erosion potential associated with biomass crops. Biomass Bioenergy 14, 351–359 (1998).

    Article  Google Scholar 

  • 28.

    Truong, S. K., McCormick, R. F. & Mullet, J. E. Bioenergy sorghum crop model predicts VPD-limited transpiration traits enhance biomass yield in water-limited environments. Front. Plant Sci. 8, 335 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Li, C. et al. Soil carbon sequestration potential in semi-arid grasslands in the Conservation Reserve Program. Geoderma 294, 80–90 (2017).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Saleem, M., Ji, H., Amirullah, A. & Brian Traw, M. Pseudomonas syringae pv tomato DC3000 growth in multiple gene knockouts predicts interactions among hormonal, biotic and abiotic stress responses. Eur. J. Plant Pathol. 149, 779–786 (2017).

    CAS  Article  Google Scholar 

  • 31.

    Zhang, Q., Saleem, M. & Wang, C. Probiotic strain Stenotrophomonas acidaminiphila BJ1 degrades and reduces chlorothalonil toxicity to soil enzymes, microbial communities and plant roots. AMB Express 7, 227 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Mahmood, A., Turgay, O. C., Farooq, M. & Hayat, R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Mortlock, M. Y. & Vanderlip, R. L. Germination and establishment of pearl millet and sorghum of different seed qualities under controlled high-temperature environments. Field Crops Res. 22, 195–209 (1989).

    Article  Google Scholar 

  • 34.

    Bond, J. J., Army, T. J. & Lehman, O. R. Row spacing, plant populations and moisture supply as factors in dryland grain sorghum production 1. Agron. J. 56, 3–6 (1964).

    Article  Google Scholar 

  • 35.

    Jones, O. R. & Johnson, G. L. Row width and plant density effects on texas high plains sorghum. J. Prod. Agric. 4, 613–621 (1991).

    Article  Google Scholar 

  • 36.

    Faisal, M., Barani, A. R. S., Malik, A., Hussain, M. & Awan, S. I. Yield response of fodder sorghum (Sorghum bicolor) to seed rate and row spacing under rain-fed conditions. J. Agric. Soc. Sci. Pak. 3, 95 (2007).

    Google Scholar 

  • 37.

    McGuire, S. J. Vulnerability in farmer seed systems: Farmer practices for coping with seed insecurity for sorghum in Eastern Ethiopia. Econ. Bot. 61, 211 (2007).

    Article  Google Scholar 

  • 38.

    Snider, J. L., Raper, R. L. & Schwab, E. B. The effect of row spacing and seeding rate on biomass production and plant stand characteristics of non-irrigated photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench). Ind. Crops Prod. 37, 527–535 (2012).

    Article  Google Scholar 

  • 39.

    Place, G. T., Reberg-Horton, S. C., Dunphy, J. E. & Smith, A. N. Seeding rate effects on weed control and yield for organic soybean production. Weed Technol. 23, 497–502 (2009).

    Article  Google Scholar 

  • 40.

    Harvey, T. L. & Thompson, C. A. Effects of sorghum density and resistance on infestations of Greenbug, Schizaphis graminum (Homoptera: Aphididae). J. Kans. Entomol. Soc. 61, 68–71 (1988).

    Google Scholar 

  • 41.

    Riedell, W. E. Mineral-nutrient synergism and dilution responses to nitrogen fertilizer in field-grown maize. J. Plant Nutr. Soil Sci. 173, 869–874 (2010).

    CAS  Article  Google Scholar 

  • 42.

    Pii, Y., Cesco, S. & Mimmo, T. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. Plant Physiol. Biochem. 94, 48–56 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O. & Bindraban, P. S. Effects of Nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 48, 1895–1920 (2017).

    CAS  Article  Google Scholar 

  • 44.

    Santos, E. F., Pongrac, P., Reis, A. R., White, P. J. & Lavres, J. Phosphorus–zinc interactions in cotton: consequences for biomass production and nutrient-use efficiency in photosynthesis. Physiol. Plant. 166, 996–1007 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 45.

    Egamberdiyeva, D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184–189 (2007).

    Article  Google Scholar 

  • 46.

    Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A. & Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 51, 897–911 (2015).

    CAS  Article  Google Scholar 

  • 47.

    Yahya, A. Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. J. Plant Nutr. 21, 1439–1451 (1998).

    CAS  Article  Google Scholar 

  • 48.

    Alam, S., Kamei, S. & Kawai, S. Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Sci. Plant Nutr. 47, 643–649 (2001).

    CAS  Article  Google Scholar 

  • 49.

    Wei Yang, T. J., Perry, P. J., Ciani, S., Pandian, S. & Schmidt, W. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J. Exp. Bot. 59, 3453–3464 (2008).

    PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Dimkpa, C. O. et al. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9, 271–278 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Petti, C., Hirano, K., Stork, J. & DeBolt, S. Mapping of a cellulose-deficient mutant named dwarf1-1 in sorghum bicolor to the green revolution gene gibberellin20-oxidase reveals a positive regulatory association between gibberellin and cellulose biosynthesis. Plant Physiol. 169, 705–716 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Xia, Y., Greissworth, E., Mucci, C., Williams, M. A. & Bolt, S. D. Characterization of culturable bacterial endophytes of switchgrass (Panicum virgatum L.) and their capacity to influence plant growth. GCB Bioenergy 5, 674–682 (2013).

    Article  Google Scholar 

  • 53.

    Chaney, A. L. & Marbach, E. P. Modified reagents for determination of urea and ammonia. Clin. Chem. 8, 130–132 (1962).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Fiske, C. H. & Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925).

    CAS  Google Scholar 

  • 55.

    Miller, G. L. & Dickens, R. Bermudagrass carbohydrate levels as influenced by potassium fertilization and cultivar. Crop Sci. 36(5), 1283–1289 (1996).

    Article  Google Scholar 

  • 56.

    Serson, W. et al. Development of whole and ground seed near-infrared spectroscopy calibrations for oil, protein, moisture, and fatty acids in Salvia hispanica. J. Am. Oil Chem. Soc. 97, 3–13 (2020).

    CAS  Article  Google Scholar 

  • 57.

    Saleem, M., Law, A. D. & Moe, L. A. Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microb. Ecol. 71, 469–472 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Meng, L. et al. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicol. Environ. Saf. 171, 75–83 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Mounde, L. G., Boh, M. Y., Cotter, M. & Rasche, F. Potential of Rhizobacteria for promoting sorghum growth and suppressing Striga hermonthica development. J. Plant Dis. Prot. 122, 100–106 (2015).

    Article  Google Scholar 

  • 60.

    Kumar, H., Dubey, R. C. & Maheshwari, D. K. Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere 3, 92–99 (2017).

    Article  Google Scholar 

  • 61.

    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Van, A. L. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Singh, M. et al. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Sci. Rep. 5, 15500 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Lei, S. A. Intraspecific competition among blackbrush (Coleogyne ramosissima) seedlings in a controlled environmental glasshouse. J. Ariz.-Nev. Acad. Sci. 37, 100–104 (2004).

    Article  Google Scholar 

  • 64.

    XiaoAn, Z. et al. Seasonal changes in the relationship between species richness and community biomass in grassland under grazing and exclosure, Horqin Sandy Land, northern China. Sci. Cold Arid Reg. 5, 177–183 (2013).

    Article  Google Scholar 

  • 65.

    de Aguiar, M. I., Fialho, J. S., de Araújo, F. C. S., Campanha, M. M. & de Oliveira, T. S. Does biomass production depend on plant community diversity?. Agrofor. Syst. 87, 699–711 (2013).

    Article  Google Scholar 

  • 66.

    Falzari, L. M., Menary, R. C. & Dragar, V. A. Optimum stand density for maximum essential oil yield in commercial fennel crops. HortScience 41, 646–650 (2006).

    Article  Google Scholar 

  • 67.

    Ghiasy-Oskoee, M., AghaAlikhani, M., Mokhtassi-Bidgoli, A., Sefidkon, F. & Ayyari, M. Seed and biomass yield responses of blessed thistle to nitrogen and density. Agron. J. 111, 601–611 (2019).

    CAS  Article  Google Scholar 

  • 68.

    Isaac, M. E., Ulzen-Appiah, F., Timmer, V. R. & Quashie-Sam, S. J. Early growth and nutritional response to resource competition in cocoa-shade intercropped systems. Plant Soil 298, 243–254 (2007).

    CAS  Article  Google Scholar 

  • 69.

    Blank, R. R. Intraspecific and interspecific pair-wise seedling competition between exotic annual grasses and native perennials: plant–soil relationships. Plant Soil 326, 331–343 (2010).

    CAS  Article  Google Scholar 

  • 70.

    Dobermann, A. R. et al. Understanding and Managing Corn Yield Potential. Agron. Hortic. — Fac. Publ. (2002).

  • 71.

    Sabais, A. C. W. et al. Soil organisms shape the competition between grassland plant species. Oecologia 170, 1021–1032 (2012).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 72.

    Munoz, A. E. & Weaver, R. W. Competition between Subterranean Clover and Rygrass for uptake of 15N-labeled fertilizer. Plant Soil 211, 173–178 (1999).

    CAS  Article  Google Scholar 

  • 73.

    Eisenhauer, N. & Scheu, S. Invasibility of experimental grassland communities: the role of earthworms, plant functional group identity and seed size. Oikos 117, 1026–1036 (2008).

    Article  Google Scholar 

  • 74.

    Tesfaye, M. et al. Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol. Biochem. 35, 1103–1113 (2003).

    CAS  Article  Google Scholar 

  • 75.

    Fernandez, A. L. et al. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Sci. Total Environ. 566–567, 949–959 (2016).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 76.

    Bashan, Y., Holguin, G. & de-Bashan, L. E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 50, 521–577 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Dinesh, R. et al. Effects of plant growth-promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale) Cultivation. Agric. Res. 2, 346–353 (2013).

    CAS  Article  Google Scholar 

  • 78.

    Li, Q. et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. Int. J. Mol. Sci. 19, 622 (2018).

    CAS  PubMed Central  Article  Google Scholar 

  • 79.

    Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, e02738-e2817 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Loreau, M., Naeem, S. & Inchausti, P. Biodiversity and ecosystem functioning: synthesis and perspectives. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (eds Loreau, M. et al.) (Oxford University Press, Oxford, 2002).

    Google Scholar 

  • 81.

    Patten, C. L. & Glick, B. R. Role of pseudomonas putida Indoleacetic Acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795–3801 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).

    CAS  Article  Google Scholar 

  • 83.

    Sahn, D. E. The Fight Against Hunger and Malnutrition: The Role of Food, Agriculture, and Targeted Policies (OUP, Oxford, 2015).

    Google Scholar 

  • 84.

    Schmidt, S. B., Jensen, P. E. & Husted, S. Manganese deficiency in plants: the impact on photosystem II. Trends Plant Sci. 21, 622–632 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    de Santiago, A., Quintero, J. M., Avilés, M. & Delgado, A. Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342, 97–104 (2011).

    CAS  Article  Google Scholar 

  • 87.

    Rajkumar, M., Sandhya, S., Prasad, M. N. V. & Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30, 1562–1574 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J. & Poole, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93 (2002).

    CAS  Article  Google Scholar 

  • 89.

    Kuo, S. & Mikkelsen, D. S. Effect of P and Mn on growth response and uptake of Fe, Mn and P by sorghum. Plant Soil 62, 15–22 (1981).

    CAS  Article  Google Scholar 

  • 90.

    Shri, P. U. & Pillay, V. Excess of soil zinc interferes with uptake of other micro and macro nutrients in Sorghum bicolor (L.) plants. Indian J. Plant Physiol. 22, 304–308 (2017).

    CAS  Article  Google Scholar 

  • 91.

    Slaton, N. A., Roberts, T. L., Golden, B. R., Ross, W. J. & Norman, R. J. Soybean response to phosphorus and potassium supplied as inorganic fertilizer or poultry litter. Agron. J. 105, 812–820 (2013).

    CAS  Article  Google Scholar 

  • 92.

    Griffin, E. A., Wright, S. J., Morin, P. J. & Carson, W. P. Pervasive interactions between foliar microbes and soil nutrients mediate leaf production and herbivore damage in a tropical forest. New Phytol. 216, 99–112 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 93.

    Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 94.

    Zuo, Y. & Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339, 83–95 (2011).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Evaluating battery revenues for offshore wind farms using advanced modeling

    Phytoliths in selected broad-leaved trees in China