in

Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands

  • 1.

    Mordecai EA. Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr. 2011;81:429–41.

    Article  Google Scholar 

  • 2.

    Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46:305–25.

    Article  Google Scholar 

  • 3.

    van der Heijden MG, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and procductivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310.

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP. Asymmetric density dependence shapes species abundances in a tropical tree community. Science. 2010;329:330–2.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Janzen DH. Herbivores and the number of tree species in tropical forests. Am Naturalist. 1970;104:501–28.

    Article  Google Scholar 

  • 7.

    Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn Popul. 1971;298:312.

    Google Scholar 

  • 8.

    Augspurger CK. Seedling survival of tropical tree species: interactions of dispersal distance, light‐gaps, and pathogens. Ecology. 1984;65:1705–12.

    Article  Google Scholar 

  • 9.

    Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, et al. Plant–soil feedbacks: the past, the present and future challenges. J Ecol. 2013;101:265–76.

    Article  Google Scholar 

  • 10.

    Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KM, Strand AE, et al. Frequency-dependent feedback constrains plant community coexistence. Nat Ecol evolution. 2018;2:1403.

    Article  Google Scholar 

  • 11.

    Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ, Mangan SA, et al. When and where plant‐soil feedback may promote plant coexistence: a meta‐analysis. Ecol Lett. 2019;22:1274–84.

    PubMed  Google Scholar 

  • 12.

    Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion. Nature. 2004;427:731–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, et al. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol Lett. 2009;12:1238–49.

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340.

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Thomson BC, Tisserant E, Plassart P, Uroz S, Griffiths RI, Hannula SE, et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol Biochem. 2015;88:403–13.

    CAS  Article  Google Scholar 

  • 17.

    Van Agtmaal M, Straathof A, Termorshuizen A, Teurlincx S, Hundscheid M, Ruyters S, et al. Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Appl Soil Ecol. 2017;121:152–60.

    Article  Google Scholar 

  • 18.

    Rincón A, Santamaría‐Pérez B, Rabasa SG, Coince A, Marçais B, Buée M. Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain. Environ Microbiol. 2015;17:3009–24.

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Change. 2016;6:182.

    Article  Google Scholar 

  • 20.

    Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:12083.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.

    PubMed  Article  CAS  Google Scholar 

  • 22.

    McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Micro Ecol. 2012;63:804–12.

    Article  Google Scholar 

  • 23.

    Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Talley SM, Coley PD, Kursar TA. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2002;2:7.

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Spear ER. Phylogenetic relationships and spatial distributions of putative fungal pathogens of seedlings across a rainfall gradient in Panama. Fungal Ecol. 2017;26:65–73.

    Article  Google Scholar 

  • 26.

    Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, et al. Large‐scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol. 2014;23:2452–72.

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Rojas JA, Jacobs JL, Napieralski S, Karaj B, Bradley CA, Chase T, et al. Oomycete species associated with soybean seedlings in North America—Part II: diversity and ecology in relation to environmental and edaphic factors. Phytopathology. 2017;107:293–304.

    PubMed  Article  Google Scholar 

  • 28.

    van West P, Appiah AA, Gow NA. Advances in research on oomycete root pathogens. Physiol Mol plant Pathol. 2003;62:99–113.

    Article  Google Scholar 

  • 29.

    Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol. 2003;69:2816–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    House GL, Bever JD. Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. Ecol Appl. 2018;28:736–48.

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nat Clim Change. 2014;4:17.

    Article  Google Scholar 

  • 32.

    IPCC. Climate change 2014: synthesis report. Switzerland: IPCC Geneva; 2014. p. 151.

    Google Scholar 

  • 33.

    Zhang N, Wan S, Guo J, Han G, Gutknecht J, Schmid B, et al. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biol Biochem. 2015;89:12–23.

    CAS  Article  Google Scholar 

  • 34.

    Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR. Effect of warming and drought on grassland microbial communities. ISME J. 2011;5:1692.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation. Glob Change Biol. 2011;17:927–42.

    Article  Google Scholar 

  • 36.

    Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl. 1990;18:315–22.

    Google Scholar 

  • 38.

    Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci. 2012;109:6241–6.

  • 39.

    Oliver AK, Callaham MA Jr, Jumpponen A. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. For Ecol Manag. 2015;345:1–9.

    Article  Google Scholar 

  • 40.

    Riit T, Tedersoo L, Drenkhan R, Runno-Paurson E, Kokko H, Anslan S. Oomycete-specific ITS primers for identification and metabarcoding. MycoKeys. 2016;14:17.

    Article  Google Scholar 

  • 41.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, et al. Towards a unified paradigm for sequence‐based identification of fungi. Mol Ecol. 2013;22:5271–7.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 43.

    Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, et al. Fungal community analysis by high‐throughput sequencing of amplified markers–a user’s guide. N. Phytologist. 2013;199:288–99.

    CAS  Article  Google Scholar 

  • 44.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 2006;443:818.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.

    Article  Google Scholar 

  • 48.

    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Rujirawat T, Patumcharoenpol P, Lohnoo T, Yingyong W, Kumsang Y, Payattikul P, et al. Probing the phylogenomics and putative pathogenicity genes of pythium insidiosum by oomycete genome analyses. Sci Rep. 2018;8:4135.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. p. 2017.

    Google Scholar 

  • 51.

    Helmus MR, Bland TJ, Williams CK, Ives AR. Phylogenetic measures of biodiversity. Am Naturalist. 2007;169:E68–83.

    Article  Google Scholar 

  • 52.

    Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–90.

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolut Bioinforma. 2008;4:EBO. S653.

    Article  Google Scholar 

  • 54.

    Pearse WD, Cadotte MW, Cavender-Bares J, Ives AR, Tucker CM, Walker SC, et al. Pez: Phylogenetics for the environmental sciences. Bioinformatics. 2015;31:2888–90.

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Fitzpatrick DA, Logue ME, Stajich JE, Butler G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolut Biol. 2006;6:99.

    Article  CAS  Google Scholar 

  • 56.

    Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem. 2008;40:2407–15.

    CAS  Article  Google Scholar 

  • 57.

    Chaudhary VB, O’Dell TE, Rillig MC, Johnson NC. Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecol. 2014;12:32–43.

    Article  Google Scholar 

  • 58.

    Morisita M. Measuring of interspecific association and similarity between communities. Mem Fac Sci Kyushu Univ Ser E. 1959;3:65–80.

    Google Scholar 

  • 59.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community ecology package, version. 2013;2.

  • 60.

    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Ochoa‐Hueso R, Collins SL, Delgado‐Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol. 2018;24:2818–27.

    Article  Google Scholar 

  • 62.

    Dequiedt S, Saby N, Lelievre M, Jolivet C, Thioulouse J, Toutain B, et al. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Glob Ecol Biogeogr. 2011;20:641–52.

    Article  Google Scholar 

  • 63.

    Samson FB, Knopf FL, Ostlie WR. Great Plains ecosystems: past, present, and future. Wildl Soc Bull. 2004;32:6–15.

    Article  Google Scholar 

  • 64.

    Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci USA. 2007;104:4979–83.

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Robideau GP, de Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11:1002–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Martin LM, Moloney KA, Wilsey BJ. An assessment of grassland restoration success using species diversity components. J Appl Ecol. 2005;42:327–36.

    Article  Google Scholar 

  • 67.

    Leach MK, Givnish TJ. Ecological determinants of species loss in remnant prairies. Science. 1996;273:1555–8.

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms

    Evaluating battery revenues for offshore wind farms using advanced modeling