in

Forensic tracers of exposure to produced water in freshwater mussels: a preliminary assessment of Ba, Sr, and cyclic hydrocarbons

  • 1.

    Clark, C. & Veil, J. Produced water volumes and management practices in the United States. Argonne Natl. Lab. Rep. https://doi.org/10.2172/1007397 (2009).

    Article  Google Scholar 

  • 2.

    Dolan, F. C., Cath, T. Y. & Hogue, T. S. Assessing the feasibility of using produced water for irrigation in Colorado. Sci. Total Environ. 640–641, 619–628 (2018).

    ADS  PubMed  Google Scholar 

  • 3.

    McDevitt, B. et al. Isotopic and element ratios fingerprint salinization impact from beneficial use of oil and gas produced water in the Western U.S. Sci. Total Environ. 716, 137006 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    McLaughlin, M. C., Borch, T., McDevitt, B., Warner, N. R. & Blotevogel, J. Water quality assessment downstream of oil and gas produced water discharges intended for beneficial reuse in arid regions. Sci. Total Environ. 713, 136607 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Kahrilas, G. A., Blotevogel, J., Stewart, P. S. & Borch, T. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ. Sci. Technol. 49, 16–32 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Haluszczak, L. O., Rose, A. W. & Kump, L. R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. Appl. Geochem. 28, 55–61 (2013).

    CAS  Google Scholar 

  • 7.

    Lester, Y. et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment. Sci. Total Environ. 512–513, 637–644 (2015).

    ADS  PubMed  Google Scholar 

  • 8.

    Michael Thurman, E., Ferrer, I., Blotevogel, J. & Borch, T. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants. Anal. Chem. 86, 9653–9661 (2014).

    PubMed  Google Scholar 

  • 9.

    Hoelzer, K. et al. Indications of transformation products from hydraulic fracturing additives in shale-gas wastewater. Environ. Sci. Technol. 50, 8036–8048 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Piotrowski, P. K. et al. Elucidating environmental fingerprinting mechanisms of unconventional gas development through hydrocarbon analysis. Anal. Chem. 90, 5466–5473 (2018).

    CAS  PubMed  Google Scholar 

  • 11.

    Piotrowski, P. K. et al. Non-Targeted chemical characterization of a Marcellus shale gas well through GC × GC with scripting algorithms and high-resolution time-of-flight mass spectrometry. Fuel 215, 363–369 (2018).

    CAS  Google Scholar 

  • 12.

    He, Y. et al. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water. Water Res. 114, 78–87 (2017).

    CAS  PubMed  Google Scholar 

  • 13.

    Llewellyn, G. T. et al. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Proc. Natl. Acad. Sci. 112, 6325 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Drollette, B. D. et al. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities. Proc. Natl. Acad. Sci. USA 112, 13184–13189 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Cozzarelli, I. M. et al. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota. s 579, 1781–1793 (2016).

    Google Scholar 

  • 16.

    Digiulio, D. C. & Jackson, R. B. Impact to underground sources of drinking water and domestic wells from production well stimulation and completion practices in the Pavillion, Wyoming, Field. Environ. Sci. Technol. 50, 4524–4536 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Gross, S. A. et al. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. J. Air Waste Manag. Assoc. 63, 424–432 (2013).

    CAS  PubMed  Google Scholar 

  • 18.

    Hildenbrand, Z. L. et al. Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development. Sci. Total Environ. 562, 906–913 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Kassotis, C. D. et al. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site. Sci. Total Environ. 557–558, 901–910 (2016).

    ADS  PubMed  Google Scholar 

  • 20.

    Burgos, W. D. et al. Watershed-scale impacts from surface water disposal of oil and gas wastewater in Western Pennsylvania. Environ. Sci. Technol. 51, 8851–8860 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Getzinger, G. J. et al. Natural gas residual fluids: sources, endpoints, and organic chemical composition after centralized waste treatment in Pennsylvania. Environ. Sci. Technol. 49, 8347–8355 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Blewett, T. A. et al. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water Flea Daphnia magna. Environ. Sci. Technol. 51, 3032–3039 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Blewett, T. A., Delompré, P. L. M., Glover, C. N. & Goss, G. G. Physical immobility as a sensitive indicator of hydraulic fracturing fluid toxicity towards Daphnia magna. Sci. Total Environ. 635, 639–643 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    He, Y. et al. Developmental toxicity of the organic fraction from hydraulic fracturing Flowback and produced waters to early life stages of Zebrafish (Danio rerio). Environ. Sci. Technol. 52, 3820–3830 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    He, Y. et al. Effects on biotransformation, oxidative stress, and endocrine disruption in rainbow trout (Oncorhynchus mykiss) exposed to hydraulic fracturing flowback and produced water. Environ. Sci. Technol. 51, 940–947 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Blewett, T. A., Weinrauch, A. M., Delompré, P. L. M. & Goss, G. G. The effect of hydraulic flowback and produced water on gill morphology, oxidative stress and antioxidant response in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 7, 46582 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Tasker, T. L. et al. Environmental and human health impacts of spreading oil and gas wastewater on roads. Environ. Sci. Technol. 52, 7081–7091 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    McDevitt, B. et al. Emerging investigator series: radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management. Environ. Sci. Process. Impacts 21, 324–338 (2019).

    MathSciNet  CAS  PubMed  Google Scholar 

  • 29.

    McLaughlin, M. C. et al. Mutagenicity assessment downstream of oil and gas produced water discharges intended for agricultural beneficial reuse. Sci. Total Environ. 715, 136944 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Folkerts, E. J., Blewett, T. A., He, Y. & Goss, G. G. Alterations to Juvenile Zebrafish (Danio rerio) swim performance after acute embryonic exposure to sub-lethal exposures of hydraulic fracturing flowback and produced water. Aquat. Toxicol. 193, 50–59 (2017).

    CAS  PubMed  Google Scholar 

  • 31.

    Folkerts, E. J., Blewett, T. A., He, Y. & Goss, G. G. Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water. Environ. Pollut. 231, 1477–1487 (2017).

    CAS  PubMed  Google Scholar 

  • 32.

    Delompré, P. L. M. et al. The osmotic effect of hyper-saline hydraulic fracturing fluid on rainbow trout, Oncorhynchus mykiss. s 211, 1–10 (2019).

    Google Scholar 

  • 33.

    Wang, N. et al. Acute toxicity of sodium chloride and potassium chloride to a unionid mussel (Lampsilis siliquoidea) in water exposures. Environ. Toxicol. Chem. 37, 3041–3049 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Wang, N., Kunz, J. L., Cleveland, D., Steevens, J. A. & Cozzarelli, I. M. Biological effects of elevated major ions in surface water contaminated by a produced water from oil production. Arch. Environ. Contam. Toxicol. 76, 670–677 (2019).

    CAS  PubMed  Google Scholar 

  • 35.

    Wang, N. et al. Evaluation of chronic toxicity of sodium chloride or potassium chloride to a unionid mussel (Lampsilis siliquoidea) in water exposures using standard and refined toxicity testing methods. Environ. Toxicol. Chem. 37, 3050–3062 (2018).

    CAS  PubMed  Google Scholar 

  • 36.

    Patnode, K. A., Hittle, E., Anderson, R. M., Zimmerman, L. & Fulton, J. W. Effects of high salinity wastewater discharges on unionid mussels in the allegheny river Pennsylvania. J. Fish Wildl. Manag. 6, 55–70 (2015).

    Google Scholar 

  • 37.

    Geeza, T. J., Gillikin, D. P., McDevitt, B., Van Sice, K. & Warner, N. R. Accumulation of marcellus formation oil and gas wastewater metals in freshwater mussel shells. Environ. Sci. Technol. 52, 10883–10892 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 38.

    De los Ríos, A. et al. Assessment of the effects of discontinuous sources of contamination through biomarker analyses on caged mussels. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2018.03.297 (2018).

    Article  PubMed  Google Scholar 

  • 39.

    Pilote, M., André, C., Turcotte, P., Gagné, F. & Gagnon, C. Metal bioaccumulation and biomarkers of effects in caged mussels exposed in the Athabasca oil sands area. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.08.023 (2018).

    Article  PubMed  Google Scholar 

  • 40.

    Bonnefille, B., Arpin-Pont, L., Gomez, E., Fenet, H. & Courant, F. Metabolic profiling identification of metabolites formed in Mediterranean mussels (Mytilus galloprovincialis) after diclofenac exposure. Sci. Total Environ. 583, 257–268 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 41.

    Spring, S. NOAA Technical Memorandum NOS ORCA 71 National Status and Trends Program for Marine Environmental Quality Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984–1992 Volume I Overview and Summary of Methods noaa NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Coastal Monitoring and Bioeffects Assessment Division Office of Ocean Resources Conservation and Assessment National Ocean Service. (1993).

  • 42.

    Lydeard, C. et al. The global decline of Nonmarine Mollusks. Bioscience 54, 321–330 (2004).

    Google Scholar 

  • 43.

    Strayer, D. L. et al. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54, 429–439 (2004).

    Google Scholar 

  • 44.

    Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biol. Rev. 92, 572–607 (2017).

    PubMed  Google Scholar 

  • 45.

    Shulkin, V. M., Presley, B. J. & Kavun, V. I. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ. Int. https://doi.org/10.1016/S0160-4120(03)00004-7 (2003).

    Article  PubMed  Google Scholar 

  • 46.

    Ishikawa, Y., Kagaya, H. & Saga, K. Biomagnification of 7Be, 234Th, and 228Ra in marine organisms near the northern Pacific coast of Japan. J. Environ. Radioact. https://doi.org/10.1016/j.jenvrad.2004.03.021 (2004).

    Article  PubMed  Google Scholar 

  • 47.

    Brenner, M., Smoak, J. M., Leeper, D. A., Streubert, M. & Baker, S. M. Radium-226 accumulation in Florida freshwater mussels. Limnol. Oceanogr. 52, 1614–1623 (2007).

    ADS  CAS  Google Scholar 

  • 48.

    Jeffree, R. A., Markich, S. J. & Brown, P. L. Comparative accumulation of alkaline-earth metals by two freshwater mussel species from the Nepean River, Australia: consistencies and a resolved paradox. Aust. J. Mar. Freshw. Res. 44, 609–634 (1993).

    CAS  Google Scholar 

  • 49.

    Markich, S. J., Brown, P. L. & Jeffree, R. A. Divalent metal accumulation in freshwater bivalves: an inverse relationship with metal phosphate solubility. Sci. Total Environ. https://doi.org/10.1016/S0048-9697(00)00721-X (2001).

    Article  PubMed  Google Scholar 

  • 50.

    Markich, S. J. & Jeffree, R. A. Absorption of divalent trace metals as analogues of calcium by Australian freshwater bivalves: an explanation of how water hardness reduces metal toxicity. Aquat. Toxicol. https://doi.org/10.1016/0166-445X(94)90072-8 (1994).

    Article  Google Scholar 

  • 51.

    Fritz, L., Ragone, L., Lutz, R. & Swapp, S. Biomineralization of barite in the shell of the freshwater asiatic clam Corbicula fluminea (Mollusca: Bivalvia). Limnol. Oceanogr. 35, 756–762 (1990).

    ADS  CAS  Google Scholar 

  • 52.

    Ricciardi, A., Neves, R. J. & Rasmussen, J. B. Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. J. Anim. Ecol. 67, 613–619 (1998).

    Google Scholar 

  • 53.

    Ricciardi, A. & Rasmussen, J. B. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222 (1999).

    Google Scholar 

  • 54.

    Vaughn, C. C. & Taylor, C. M. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conserv. Biol. 13, 912–920 (1999).

    Google Scholar 

  • 55.

    Weggler, B. A. et al. Untargeted identification of wood type-specific markers in particulate matter from wood combustion. Environ. Sci. Technol. 50, 10073–10081 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 56

    Colborn, T. & Smolen, M. J. Epidemiological analysis of persistent organochlorine contaminants in cetaceans. Rev. Environ. Contam. Toxicol. https://doi.org/10.1007/978-1-4613-8478-6_4 (1996).

    Article  PubMed  Google Scholar 

  • 57.

    Halbrook, R. S., Kirkpatrick, R. L., Scanlon, P. F., Vaughan, M. R. & Veit, H. P. Environmental Contamination a n d Toxicology Muskrat Populations in Virginia’s Elizabeth River: Physiological Condition and Accumulation of Environmental Contaminants. Arch. Environ. Contain. Toxicol 25, (ARCHIVES OF, 1993).

  • 58.

    Birdsall, K., Kukor, J. J. & Cheney, M. A. Uptake of polycyclic aromatic hydrocarbon compounds by the gills of the bivalve mollusk Elliptio complanata. Environ. Toxicol. Chem. 20, 309–316 (2001).

    CAS  PubMed  Google Scholar 

  • 59.

    Thorsen, W. A. et al. Elimination rate constants of 46 polycyclic aromatic hydrocarbons in the unionid mussel, Elliptio complanata. Arch. Environ. Contam. Toxicol. https://doi.org/10.1007/s00244-004-3186-y (2004).

    Article  PubMed  Google Scholar 

  • 60.

    Gewurtz, S. B., Drouillard, K. G., Lazar, R. & Haffner, G. D. Quantitative biomonitoring of PAHs using the barnes mussel (Elliptio complanata). Arch. Environ. Contam. Toxicol. https://doi.org/10.1007/s00244-002-1153-z (2002).

    Article  PubMed  Google Scholar 

  • 61.

    Gewurtz, S. G., Lazar, R. & Haffner, G. D. Biomonitoring of bioavailable PAH and PCB water concentrations in the Detroit River using the freshwater mussel Elliptio complanata. J. Great Lakes Res. 29, 242–255 (2003).

    CAS  Google Scholar 

  • 62.

    Metcalfe, J. L. & Charlton, M. N. Freshwater mussels as biomonitors for organic industrial contaminants and pesticides in the St Lawrence River. Sci. Total Environ. 98, 595–615 (1990).

    ADS  Google Scholar 

  • 63

    Drouillard, K. G. et al. Quantitative biomonitoring in the Detroit River using Elliptio complanata: verification of steady state correction factors and temporal trends of PCBs in water between 1998 and 2015. Bull. Environ. Contam. Toxicol. 97, 757–762 (2016).

    CAS  PubMed  Google Scholar 

  • 64.

    Drouillard, K. G., Chan, S., O’Rourke, S., Douglas Haffner, G. & Letcher, R. J. Elimination of 10 polybrominated diphenyl ether (PBDE) congeners and selected polychlorinated biphenyls (PCBs) from the freshwater mussel, Elliptio complanata. Chemosphere 69, 362–370 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 65.

    O’Rourke, S., Drouillard, K. G. & Haffner, G. D. Determination of laboratory and field elimination rates of polychlorinated biphenyls (PCBs) in the freshwater mussel, Elliptio complanata. Environ. Contam. Toxicol. 47, 74–83 (2004).

    Google Scholar 

  • 66.

    Xu, M. et al. Quantitative structure-activity relationship for the depuration rate constants of polychlorinated biphenyls in the freshwater mussel, Elliptio complanata. J. Environ. Sci. Heal. Part B 44, 278–283 (2009).

    CAS  Google Scholar 

  • 67.

    Sabik, H., Gagné, F., Blaise, C., Marcogliese, D. J. & Jeannot, R. Occurrence of alkylphenol polyethoxylates in the St. Lawrence River and their bioconcentration by mussels (Elliptio complanata). Chemosphere 51, 349–356 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 68.

    Donkin, P., Smith, E. L. & Rowland, S. J. Toxic effects of unresolved complex mixtures of aromatic hydrocarhons accumulated by mussels, Mytilus edulis, from contaminated field sites. Environ. Sci. Technol. 37, 4825–4830 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Booth, A. M. et al. Unresolved complex mixtures of aromatic hydrocarbons: thousands of overlooked persistent, bioaccumulative, and toxic contaminants in mussels. Environ. Sci. Technol. 41, 457–464 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 70.

    Gillikin, D. P. et al. Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2005.09.015 (2006).

    Article  Google Scholar 

  • 71.

    Geeza, T. J. et al. Controls on magnesium, manganese, strontium, and barium concentrations recorded in freshwater mussel shells from Ohio. Chem. Geol. https://doi.org/10.1016/j.chemgeo.2018.01.001 (2019).

    Article  Google Scholar 

  • 72.

    Abualfaraj, N., Gurian, P. L. & Olson, M. S. Characterization of marcellus shale flowback water. Environ. Eng. Sci. 31, 514–524 (2014).

    CAS  Google Scholar 

  • 73.

    Chapman, E. C. et al. Geochemical and strontium isotope characterization of produced waters from marcellus shale natural gas extraction. Environ. Sci. Technol. 46, 3545–3553 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 74.

    Poulain, C. et al. An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chem. Geol. 396, 42–50 (2015).

    ADS  CAS  Google Scholar 

  • 75.

    Lorens, R. B. & Bender, M. L. The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochim. Cosmochim. Acta 44, 1265–1278 (1980).

    ADS  CAS  Google Scholar 

  • 76.

    Wheeler, A. Mechanisms of molluscan shell formation. (1992).

  • 77.

    Wilbur, K. M. The Mollusca (Academic Press, Cambridge, 1983).

    Google Scholar 

  • 78.

    Crenshaw, M. A. The inorganic composition of molluscan extrapallial fluid. Biol. Bull. 143, 6–512 (1972).

    Google Scholar 

  • 79.

    Mount, A. S., Wheeler, A. P., Paradkar, R. P. & Snider, D. Hemocyte-mediated shell mineralization in the Eastern Oyster. Science 304, 297–300 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 80.

    Nair, P. S. & Robinson, W. E. Calcium speciation and exchange between blood and extrapallial fluid of the quahog Mercenaria mercenaria (L.). Biol. Bull. 195, 43–51 (1998).

    CAS  PubMed  Google Scholar 

  • 81.

    Kelemen, Z., Gillikin, D. P. & Bouillon, S. Relationship between river water chemistry and shell chemistry of two tropical African freshwater bivalve species. Chem. Geol. 526, 130–141 (2019).

    ADS  CAS  Google Scholar 

  • 82.

    Canadian Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Water Quality Index. (2001).

  • 83.

    Todd, A. K. & Kaltenecker, M. G. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk. Environ. Pollut. 171, 199–206 (2012).

    CAS  PubMed  Google Scholar 

  • 84.

    O’Neil, D. D. & Gillikin, D. P. Do freshwater mussel shells record road-salt pollution?. Sci. Rep. 4, 1–6 (2014).

    Google Scholar 

  • 85.

    Ganoe, L. S., Brown, J. D., Yabsley, M. J., Lovallo, M. J. & Walter, W. D. A review of pathogens, diseases, and contaminants of muskrats (Ondatra zibethicus) in North America. Frontiers Veterin. Sci. 7, 233 (2020).

    Google Scholar 

  • 86.

    Warner, N. R., Christie, C. A., Jackson, R. B. & Vengosh, A. Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania. Environ. Sci. Technol. 47, 11849–11857 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 87.

    United States Environmental Protection Agency. Method 3510C (SW-846): Separatory Funnel Liquid-Liquid Extraction, Revision 3. (1996).

  • 88.

    United States Environmental Protection Agency. Method 3005A (SW-846): Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy, Revision 3. (1992).

  • 89.

    Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Web Serv. 46, W486–W494 (2018).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Evaluating battery revenues for offshore wind farms using advanced modeling

    Phytoliths in selected broad-leaved trees in China