in

Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (Ailurus fulgens) in Kangchenjunga landscape, India

  • 1.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405(6783), 243–253 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Lindenmayer, D. B. & Fischer, J. Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis (Island Press, Washington, 2013).

    Google Scholar 

  • 3.

    Hilty, J. A., Lidicker, W. Z. Jr. & Merenlender, A. M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation (Island Press, Washington, 2012).

    Google Scholar 

  • 4.

    Katayama, N. et al. Landscape heterogeneity–biodiversity relationship: Effect of range size. PLoS ONE https://doi.org/10.1371/journal.pone.0093359 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Doherty, T. S. & Driscoll, D. A. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. B Biol. Sci. 285(1870), 2017–2272 (2018).

    Google Scholar 

  • 6.

    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143(9), 1919–1927 (2010).

    Article  Google Scholar 

  • 7.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1(2), e1500052 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Lambertucci, S. A. et al. Apex scavenger movements call for transboundary conservation policies. Biol. Conserv. 170, 145–150 (2014).

    Article  Google Scholar 

  • 9.

    Gurung, J. et al. Evolution of a transboundary landscape approach in the Hindu Kush Himalaya: Key learnings from the Kangchenjunga landscape. Glob. Ecol. Conserv. 17, 1–15 (2019).

    Google Scholar 

  • 10.

    Wei, F., Feng, Z., Wang, Z., Zhou, A. & Hu, J. Use of the nutrients in bamboo by the red panda (Ailurus fulgens). J. Zool. 248(4), 535–541 (1999).

    Google Scholar 

  • 11.

    Choudhury, A. An overview of the status and conservation of the red panda Ailurus fulgens in India, with reference to its global status. Oryx 35(3), 250–259 (2001).

    Google Scholar 

  • 12.

    Glatston, A., Wei, F., Than, Z., & Sherpa, A. Ailurus fulgens. The IUCN red list of threatened species, 4 (2015).

  • 13.

    Roberts, M. S. & Gittleman, J. L. Ailurus fulgens. Mamm. Species 222, 1–8 (1984).

    Google Scholar 

  • 14.

    Wei, F., Feng, Z., Wang, Z. & Hu, J. Current distribution, status and conservation of wild red pandas Ailurus fulgens in China. Biol. Conserv. 89, 285–291 (1999).

    Google Scholar 

  • 15.

    Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 9, 5751 (2020).

    ADS  Google Scholar 

  • 16.

    Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Cohen, J. E. & Small, C. Hypsographic demography: The distribution of human population by altitude. Proc. Natl. Acad. Sci. U.S.A. 95, 14009–14014 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Panthi, S., Wang, T., Sun, Y. & Thapa, A. An assessment of human impacts on endangered red pandas (Ailurus fulgens) living in the Himalaya. Ecol. Evol. 9, 13413–13425 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Hansen, A. J. & De Fries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17(4), 974–988 (2007).

    PubMed  Google Scholar 

  • 20.

    Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red Panda Ailurus fulgens in the singhalila national Park, Darjeeling, India. Biol. Conserv. 98, 11–18 (2001).

    Google Scholar 

  • 21.

    Chakraborty, R. et al. Status, abundance, and habitat associations of the red panda (Ailurus fulgens) in Pangchen Valley, Arunachal Pradesh, India. Mammalia https://doi.org/10.1515/mammalia-2013-0105 (2015).

    Article  Google Scholar 

  • 22.

    Sharma, H. P., Belant, J. L. & Swenson, J. E. Effects of livestock on occurrence of the Vulnerable red panda Ailurus fulgens in Rara National Park, Nepal. Oryx 48(2), 228–231 (2014).

    Google Scholar 

  • 23.

    Panthi, S., Coogan, S. C., Aryal, A. & Raubenheimer, D. Diet and nutrient balance of red panda in Nepal. Sci. Nat. 102(9–10), 54 (2015).

    Google Scholar 

  • 24.

    Holderegger, R. & Wagner, H. H. Landscape genetics. Bioscience 58(3), 199–207 (2008).

    Google Scholar 

  • 25.

    Balkenhol, N., Waits, L. P. & Dezzani, R. J. Statistical approaches in landscape genetics: An evaluation of methods for linking landscape and genetic data. Ecography 32(5), 818–830 (2009).

    Google Scholar 

  • 26.

    Manel, S. et al. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol. Ecol. 19(17), 3760–3772 (2010).

    CAS  PubMed  Google Scholar 

  • 27.

    Cushman, S. A., McKELVEY, K. S. & Schwartz, M. K. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23(2), 368–376 (2009).

    PubMed  Google Scholar 

  • 28.

    Brodie, J. F. et al. Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conserv. Biol. 29(1), 122–132 (2015).

    PubMed  Google Scholar 

  • 29.

    Zeller, K. A. et al. Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers. Distrib. 24(7), 868–879 (2018).

    Google Scholar 

  • 30.

    Menchaca, A. et al. Population genetic structure and habitat connectivity for jaguar (Panthera onca) conservation in Central Belize. BMC Genet. 20(1), 1–13 (2019).

    Article  CAS  Google Scholar 

  • 31.

    Hedrick, P. Large variance in reproductive success and the Ne/N ratio. Evolution 59(7), 1596–1599 (2005).

    PubMed  Article  Google Scholar 

  • 32.

    Mallick, J. K. Status of Red Panda Ailurus fulgens in Neora Valley National Park, Darjeeling District, West Bengal, India. Small Carnivore Conserv. 43(30), e36 (2010).

    Google Scholar 

  • 33.

    Zhang, Z. J. et al. Microhabitat separation during winter among sympatric giant pandas, red pandas and tufted deer: The effects of diet, body size, and energy metabolism. Can. J. Zool. 82, 1451–1458 (2004).

    Article  Google Scholar 

  • 34.

    Dorji, S., Vernes, K. & Rajaratnam, R. Habitat correlates of the Red Panda in the temperate forests of Bhutan. PLoS ONE 6(10), e26483 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Zhou, X. et al. The winter habitat selection of red panda (Ailurus fulgens) in the Meigu Dafengding national nature reserve, China. Curr. Sci. 105, 1425–1429 (2013).

    Google Scholar 

  • 36.

    Rao, A. N., Zhang, X. P. & Zhu, S. L. Selected papers on recent bamboo research in China (1991).

  • 37.

    Ziegler, S. et al. Sikkim-under the sign of the red panda. Z. Des Kölner Zoos 2, 79–92 (2010).

    Google Scholar 

  • 38.

    Ghose, D. & Dutta, P. K. Status and Distribution of Red Panda Ailurus fulgens fulgens in India. In Red Panda 357–373 (William Andrew Publishing, Park Ridge, 2011).

    Google Scholar 

  • 39.

    Buckland, S. T., Anderson, D. R., Burnham, K. P. & Laake, J. L. Distance Sampling: Estimating Abundance of Biological Populations (Chapman and Hall, London, 1993).

    Google Scholar 

  • 40.

    Hu, Y. et al. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Mol. Ecol. 20(13), 2662–2675 (2011).

    PubMed  Google Scholar 

  • 41.

    Liu, Z., Zhang, B., Wei, F. & Li, M. Isolation and characterization of microsatellite loci for the red panda, Ailurus fulgens. Mol. Ecol. Notes 5(1), 27–29 (2005).

    CAS  Google Scholar 

  • 42.

    Mallick, J. K. In situ and ex situ conservation of Red Panda in Darjeeling district, West Bengal, India. Animal Divers. Nat. Hist. Conserv. 5, 283–305 (2015).

    Google Scholar 

  • 43.

    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163(3), 1177–1191 (2003).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Bahuguna, N. C. & Mallick, J. K. Handbook of the Mammals of South Asia: With Special Emphasis on India, Bhutan, and Bangladesh (Natraj Publishers, Dehradun, 2010).

    Google Scholar 

  • 45.

    Deb, S., Ahmed, A. & Datta, D. An alternative approach for delineating eco-sensitive zones around a wildlife sanctuary applying geospatial techniques. Environ. Monit. Assess. 186(4), 2641–2651 (2014).

    PubMed  Article  Google Scholar 

  • 46.

    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges?. Ecol. Lett. 14, 677–689 (2011).

    PubMed  Article  Google Scholar 

  • 47.

    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Santure, A. W. & Garant, D. Wild GWAS—Association mapping in natural populations. Mol. Ecol. Resour. 18(4), 729–738 (2018).

    PubMed  Article  Google Scholar 

  • 49.

    Provan, J., Glendinning, K., Kelly, R. & Maggs, C. A. Levels and patterns of population genetic diversity in the red seaweed Chondrus crispus (Florideophyceae): A direct comparison of single nucleotide polymorphisms and microsatellites. Biol. J. Linn. Soc. 108(2), 251–262 (2013).

    Article  Google Scholar 

  • 50.

    Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11(10), 697–709 (2010).

    CAS  PubMed  Google Scholar 

  • 51.

    Waraniak, J. M., Fisher, J. D., Purcell, K., Mushet, D. M. & Stockwell, C. A. Landscape genetics reveal broad and fine-scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota. Ecol. Evol. 9(3), 1041–1060 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Champion, S. H., & Seth, S. K. A revised survey of the forest types of India. In A revised survey of the forest types of India. (1968).

  • 53.

    Wikramanayake, E. D., Dinerstein, E. & Loucks, C. J. Terrestrial Ecoregions of the Indo-Pacific: A Conservation Assessment (Island Press, Washington, 2002).

    Google Scholar 

  • 54.

    Joshi, B. D. et al. Field testing of different methods for monitoring mammals in Trans-Himalayas: A case study from Lahaul and Spiti. Glob. Ecol. Conserv. 21, e00824 (2020).

    Google Scholar 

  • 55.

    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19(11), 1366–1379 (2013).

    Google Scholar 

  • 56.

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    PubMed  Google Scholar 

  • 57.

    Bista, D. et al. Distribution and habitat use of red panda in the Chitwan-Annapurna landscape of Nepal. PLoS ONE 12(10), e0178797 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 25(15), 1965–1978 (2005).

    Google Scholar 

  • 59.

    Negi, S. P. Forest cover in Indian Himalayan states—An overview. Indian J. For. 32(1), 1–5 (2009).

    MathSciNet  Google Scholar 

  • 60.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).

    Google Scholar 

  • 61.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2), 129–151 (2006).

    Google Scholar 

  • 62.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).

    Google Scholar 

  • 63.

    Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).

    Google Scholar 

  • 64.

    Dudík, M., Phillips, S. J. & Schapire, R. E. Correcting sample selection bias in maximum entropy density estimation. In Advances in Neural Information Processing Systems (eds Dietterich, T. G. et al.) 323–330 (MIT Press, Cambridge, 2006).

    Google Scholar 

  • 65.

    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33(3), 607–611 (2010).

    Google Scholar 

  • 66.

    Sharma, L. K., Mukherjee, T., Saren, P. C. & Chandra, K. Identifying suitable habitat and corridors for Indian Grey Wolf (Canis lupus pallipes) in Chotta Nagpur Plateau and lower Gangetic planes: A species with differential management needs. PLoS ONE https://doi.org/10.1371/journal.pone.0215019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  • 68.

    Bagaria, P. et al. West to east shift in range predicted for Himalayan Langur in climate change scenario. Glob. Ecol. Conserv. 22, e00926 (2020).

    Google Scholar 

  • 69.

    Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).

    CAS  Google Scholar 

  • 70.

    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41(4), 629–643 (2014).

    Article  Google Scholar 

  • 71.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997).

    Article  Google Scholar 

  • 72.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article  Google Scholar 

  • 73.

    Amy, G. et al. Genetic landscapes GIS toolbox: Tools to map patterns of genetic divergence and diversity. Mol. Ecol. Resour. 11, 158–161. https://doi.org/10.1111/j.1755-0998.2010.02904 (2010).

    Article  Google Scholar 

  • 74.

    Liszka, T. An interpolation method for an irregular net of nodes. Int. J. Numer. Methods Eng. 20, 1599–1612 (1984).

    MATH  Article  Google Scholar 

  • 75.

    Mateo-Sánchez, M. C. et al. Estimating effective landscape distances and movement corridors: Comparison of habitat and genetic data. Ecosphere https://doi.org/10.1890/ES14-00387.1 (2015).

    Article  Google Scholar 

  • 76.

    Roffler, G. H., Schwartz, M. K. & Pilgrim, K. L. Identification of landscape features influencing gene flow: How useful are habitat selection models?. Evol. Appl. 9(6), 805–817 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    McRae, B. H. & Shah, V. B. Circuitscape User’s Guide (The University of California, Santa Barbara, 2009).

    Google Scholar 

  • 78.

    Liang, X. U. et al. Isolation and characterization of 16 tetranucleotide microsatellite loci in the red panda (Ailurus fulgens). Mol. Ecol. Notes 7(6), 1012–1014 (2007).

    CAS  Article  Google Scholar 

  • 79.

    Yang, A. et al. Twenty-five microsatellite loci of Ailurus fulgens identified by genome survey. Sichuan J. Zool. 38(1), 56–61 (2019).

    Google Scholar 

  • 80.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4(3), 535–538 (2004).

    Google Scholar 

  • 81.

    Johnson, P. C. & Haydon, D. T. Maximum-likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data. Genetics 175(2), 827–842 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Peakall, R. O. D. & Smouse, P. E. GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6(1), 288–295 (2006).

    Google Scholar 

  • 83.

    Rousset, F. Genepop ’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8(1), 103–106 (2008).

    PubMed  Google Scholar 

  • 84.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  • 85.

    Bonferroni, C. E., Bonferroni, C., & Bonferroni, C. E. Teoria statistica delle classi e calcolo delle probabilita’ (1936).

  • 86.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567 (2010).

    PubMed  Google Scholar 

  • 87.

    Vergara, M. et al. Inferring population genetic structure in widely and continuously distributed carnivores: The stone marten (Martes foina) as a case study. PLoS ONE 10(7), e0134257 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 88.

    Pritchard, J. K., Wen, W., & Falush, D. Documentation for STRUCTURE software: Version 2 (2003).

  • 89.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14(8), 2611–2620 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 90.

    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361 (2012).

    Google Scholar 

  • 91.

    Guillot, G., Santos, F. & Estoup, A. Analysing georeferenced population genetics data with Geneland: A new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24(11), 1406–1407 (2008).

    CAS  PubMed  Google Scholar 

  • 92.

    Jombart, T. An introduction to adegenet 1.3-4. R vignette, R-Forge, The R Project for Statistical Computing (2012).

  • 93.

    Landguth, E. L., Cushman, S. A., Murphy, M. A. & Luikart, G. Relationships between migration rates and landscape resistance assessed using individual-based simulations. Mol. Ecol. Resour. 10(5), 854–862 (2010).

    CAS  PubMed  Google Scholar 

  • 94.

    Piry, S. et al. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95(6), 536–539 (2004).

    CAS  PubMed  Google Scholar 

  • 95.

    Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 13(1), 55–65 (2004).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Evaluating battery revenues for offshore wind farms using advanced modeling

    Phytoliths in selected broad-leaved trees in China