in

Exploring source differences on diet-tissue discrimination factors in the analysis of stable isotope mixing models

  • 1.

    Hopkins, J. B. & Ferguson, J. M. Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS ONE 7, e28478 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).

    PubMed  Article  Google Scholar 

  • 3.

    Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 835, 823–835 (2014).

    Article  Google Scholar 

  • 4.

    Hopkins, J. B., Ferguson, J. M., Tyers, D. B. & Kurle, C. M. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem. PLoS ONE 12, e0174903 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 6.

    Ward, E. J., Semmens, B. X., Phillips, D. L., Moore, J. W. & Bouwes, N. A quantitative approach to combine sources in stable isotope mixing models. Ecosphere 2, art19 (2011).

    Article  Google Scholar 

  • 7.

    Moore, J. W. & Semmens, B. X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 11, 470–480 (2008).

    PubMed  Article  Google Scholar 

  • 8.

    Stock, B. C. & Semmens, B. X. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562–2569 (2016).

    PubMed  Article  Google Scholar 

  • 9.

    Koch, P. L. & Phillips, D. L. Incorporating concentration dependence in stable isotope mixing models: A reply to Robbins, Hilderbrand and Farley (2002). Oecologia 133, 14–18 (2002).

    ADS  PubMed  Article  Google Scholar 

  • 10.

    Ward, E. J., Semmens, B. X. & Schindler, D. E. Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ. Sci. Technol. 44, 4645–4650 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).

    MathSciNet  Google Scholar 

  • 12.

    Brown, C. J., Brett, M. T., Adame, M. F., Stewart-Koster, B. & Bunn, S. E. Quantifying learning in biotracer studies. Oecologia 187, 597–608 (2018).

    ADS  PubMed  Article  Google Scholar 

  • 13.

    Bond, A. L. & Diamond, A. W. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol. Appl. 21, 1017–1023 (2011).

    PubMed  Article  Google Scholar 

  • 14.

    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).

    Article  Google Scholar 

  • 15.

    Gannes, L. Z., O’Brien, D. M. & Martinez del Rio, C. Stable isotopes in animal ecology: Assumtions, caveats, and a call for more laboratory experiments. Ecology 78, 1271–1276 (1997).

    Article  Google Scholar 

  • 16.

    Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 32–37 (1983).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Wessels, F. J. & Hahn, D. A. Carbon 13 discrimination during lipid biosynthesis varies with dietary concentration of stable isotopes: Implications for stable isotope analyses. Funct. Ecol. 24, 1017–1022 (2010).

    Article  Google Scholar 

  • 19.

    Carleton, S. A. & del Rio, C. M. Growth and catabolism in isotopic incorporation: A new formulation and experimental data. Funct. Ecol. 24, 805–812 (2010).

    Article  Google Scholar 

  • 20.

    O’Connell, T. C. ‘Trophic’ and ‘source’ amino acids in trophic estimation: A likely metabolic explanation. Oecologia 184, 317–326 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Deniro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Martínez del Río, C. & Wolf, B. Mass-balance models for animal isotopic ecology. In Physiological and Ecological Adaptations to Feeding in Vertebrates (eds. Starck, J. M. & Wang, T.) 141–174 (Science Publishers, 2005). https://doi.org/10.1017/CBO9781107415324.004.

  • 23.

    Voigt, C. C., Rex, K., Michener, R. H. & Speakman, J. R. Nutrient routing in omnivorous animals tracked by stable carbon isotopes in tissue and exhaled breath. Oecologia 157, 31–40 (2008).

    ADS  PubMed  Article  Google Scholar 

  • 24.

    Martínez Del Rio, C., Wolf, N., Carleton, S. A. & Gannes, L. Z. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. 84, 91–111 (2009).

    Article  Google Scholar 

  • 25.

    McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

    CAS  Article  Google Scholar 

  • 26.

    Caut, S., Angulo, E. & Courchamp, F. Caution on isotopic model use for analyses of consumer diet. Can. J. Zool. 86, 438–445 (2008).

    CAS  Article  Google Scholar 

  • 27.

    Greer, A. L., Horton, T. W. & Nelson, X. J. Simple ways to calculate stable isotope discrimination factors and convert between tissue types. Methods Ecol. Evol. 6, 1341–1348 (2015).

    Article  Google Scholar 

  • 28.

    Alves-Stanley, C. D. & Worthy, G. A. J. Carbon and nitrogen stable isotope turnover rates and diet-tissue discrimination in Florida manatees (Trichechus manatus latirostris). J. Exp. Biol. 212, 2349–2355 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Caut, S., Angulo, E. & Courchamp, F. Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443–453 (2009).

    CAS  Article  Google Scholar 

  • 30.

    Bearhop, S., Waldron, S., Votier, S. C. & Furness, R. W. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol. Biochem. Zool. 75, 451–458 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Carleton, S. A., Kelly, L., Anderson-Sprecher, R. & Martinez del Rio, C. Should we use one-, or multi-compartment models to describe 13C incorporation into animal tissues?. Rapid Commun. Mass Spectrom. 22, 3008–3014 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 32.

    Steinitz, R., Lemm, J. M., Pasachnik, S. A. & Kurle, C. M. Diet-tissue stable isotope ( Δ13C and Δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30, 9–21 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 33.

    Cloyed, C. S., Newsome, S. D. & Eason, P. K. Trophic discrimination factors and incorporation rates of carbon- and nitrogen-stable isotopes in adult green frogs, Lithobates clamitans. Physiol. Biochem. Zool. 88, 576–585 (2015).

    PubMed  Article  Google Scholar 

  • 34.

    Neres-Lima, V. et al. Allochthonous and autochthonous carbon flows in food webs of tropical forest streams. Freshw. Biol. 62, 1012–1023 (2017).

    CAS  Article  Google Scholar 

  • 35.

    Mill, A. C., Pinnegar, J. K. & Polunin, N. V. C. Explaining isotope trophic-step fractionation: Why herbivorous fish are different. Funct. Ecol. 21, 1137–1145 (2007).

    Article  Google Scholar 

  • 36.

    Busst, G. M. A. & Britton, J. R. High variability in stable isotope diet–tissue discrimination factors of two omnivorous freshwater fishes in controlled ex situ conditions. J. Exp. Biol. 219, 1060–1068 (2016).

    PubMed  Article  Google Scholar 

  • 37.

    Heady, W. N. & Moore, J. W. Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia 172, 21–34 (2013).

    ADS  PubMed  Article  Google Scholar 

  • 38.

    Busst, G. M. A., Bašić, T. & Britton, J. R. Stable isotope signatures and trophic-step fractionation factors of fish tissues collected as non-lethal surrogates of dorsal muscle. Rapid Commun. Mass Spectrom. 29, 1535–1544 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Busst, G. M. A. & Britton, J. R. Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia 805, 49–60 (2018).

    CAS  Article  Google Scholar 

  • 40.

    Bunn, S. E., Leigh, C. & Jardine, T. D. Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnol. Oceanogr. 58, 765–773 (2013).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Bastos, R. F., Corrêa, F., Winemiller, K. O. & Garcia, A. M. Are you what you eat? Effects of trophic discrimination factors on estimates of food assimilation and trophic position with a new estimation method. Ecol. Indic. 75, 234–241 (2017).

    Article  Google Scholar 

  • 42.

    Kambikambi, M. J., Chakona, A. & Kadye, W. T. The influence of diet composition and tissue type on the stable isotope incorporation patterns of a small-bodied southern African minnow Enteromius anoplus (Cypriniformes, Cyprinidae). Rapid Commun. Mass Spectrom. 33, 613–623 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    Hobson, K. A. & Welch, H. E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84, 9–18 (1992).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Healy, K. et al. SIDER: An R package for predicting trophic discrimination factors of consumers based on their ecology and phylogenetic relatedness. Ecography 41, 1393–1400 (2018).

    Article  Google Scholar 

  • 45.

    Soto, D. X., Gacia, E. & Catalan, J. Freshwater food web studies: A plea for multiple tracer approach. Limnetica 32, 97–106 (2013).

    Google Scholar 

  • 46.

    Cucherousset, J., Bouletreau, S., Martino, A., Roussel, J. M. & Santoul, F. Using stable isotope analyses to determine the ecological effects of non-native fishes. Fish. Manag. Ecol. 19, 111–119 (2012).

    Article  Google Scholar 

  • 47.

    Kadye, W. T., Chakona, A. & Jordaan, M. S. Swimming with the giant: Coexistence patterns of a new redfin minnow Pseudobarbus skeltoni from a global biodiversity hot spot. Ecol. Evol. 6, 7141–7155 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Skelton, P. H. A Complete Guide to the Freshwater Fishes of Southern Africa. (Struik, 2001). https://doi.org/10.2989/16085914.2002.9626577.

  • 49.

    Matley, J. K., Fisk, A. T., Tobin, A. J., Heupel, M. R. & Simpfendorfer, C. A. Diet-tissue discrimination factors and turnover of carbon and nitrogen stable isotopes in tissues of an adult predatory coral reef fish, Plectropomus leopardus. Rapid Commun. Mass Spectrom. 30, 29–44 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article  Google Scholar 

  • 51.

    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Tronquart, N. H., Mazeas, L., Reuilly-Manenti, L., Zahm, A. & Belliard, J. Fish fins as non-lethal surrogates for muscle tissues in freshwater food web studies using stable isotopes. Rapid Commun. Mass Spectrom. 26, 1603–1608 (2012).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Cerling, T. E. et al. Determining biological tissue turnover using stable isotopes: The reaction progress variable. Oecologia 151, 175–189 (2007).

    ADS  PubMed  Article  Google Scholar 

  • 55.

    Martínez Del Rio, C. & Anderson-Sprecher, R. Beyond the reaction progress variable: The meaning and significance of isotopic incorporation data. Oecologia 156, 765–772 (2008).

    ADS  PubMed  Article  Google Scholar 

  • 56.

    Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 3–13 (2016) http://cran.r-project.org/package=rjags.

  • 57.

    Elzhov, T., Mullen, K., Spiess, A. & Bolker, B. minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. R package version 1.2–1. https://CRAN.R-project.org/package=minpack.lm (2016).

  • 58.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Article  Google Scholar 

  • 59.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    MATH  Article  Google Scholar 

  • 60.

    Sweeting, C. J., Barry, J., Barnes, C., Polunin, N. V. C. & Jennings, S. Effects of body size and environment on diet-tissue δ15N fractionation in fishes. J. Exp. Mar. Biol. Ecol. 340, 1–10 (2007).

    CAS  Article  Google Scholar 

  • 61.

    Boutton, T. W. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. In Carbon Isotope Techniques (eds. Coleman, D. & Fry, B.) 173–186 (Academic Press, London, 1991). https://doi.org/10.1016/b978-0-12-179730-0.50016-3.

  • 62.

    Franssen, N. R., Gilbert, E. I., James, A. P. & Davis, J. E. Isotopic tissue turnover and discrimination factors following a laboratory diet switch in Colorado pikeminnow ( Ptychocheilus lucius ). Can. J. Fish. Aquat. Sci. 74, 265–272 (2017).

    CAS  Article  Google Scholar 

  • 63.

    Britton, J. R. & Busst, G. M. A. Stable isotope discrimination factors of omnivorous fishes: Influence of tissue type, temperature, diet composition and formulated feeds. Hydrobiologia 808, 219–234 (2018).

    CAS  Article  Google Scholar 

  • 64.

    Roth, J. D. & Hobson, K. A. Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: Implications for dietary reconstruction. Can. J. Zool. 78, 848–852 (2000).

    Article  Google Scholar 

  • 65.

    Robbins, C. T., Felicetti, L. A. & Florin, S. T. The impact of protein quality on stable nitrogen isotope ratio discrimination and assimilated diet estimation. Oecologia 162, 571–579 (2010).

    ADS  PubMed  Article  Google Scholar 

  • 66.

    Carter, W. A., Bauchinger, U. & McWilliams, S. R. The importance of isotopic turnover for understanding key aspects of animal ecology and nutrition. Diversity 11, 84 (2019).

    CAS  Article  Google Scholar 

  • 67.

    Ishikawa, N. F. Use of compound-specific nitrogen isotope analysis of amino acids in trophic ecology: Assumptions, applications, and implications. Ecol. Res. 33, 825–837 (2018).

    CAS  Article  Google Scholar 

  • 68.

    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of δ13C and δ15N among fish tissues: Implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).

    Article  Google Scholar 

  • 69.

    Guelinckx, J. et al. Changes in δ13C and δ15N in different tissues of juvenile sand goby Pomatoschistus minutus: A laboratory diet-switch experiment. Mar. Ecol. Prog. Ser. 341, 205–215 (2007).

    ADS  CAS  Article  Google Scholar 

  • 70.

    Shigeta, K., Tsuma, S., Yonekura, R., Kakamu, H. & Maruyama, A. Isotopic analysis of epidermal mucus in freshwater fishes can reveal short-time diet variations. Ecol. Res. 32, 643–652 (2017).

    CAS  Article  Google Scholar 

  • 71.

    McIntyre, P. B. & Flecker, A. S. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 148, 12–21 (2006).

    ADS  PubMed  Article  Google Scholar 

  • 72.

    Sanderson, B. L. et al. Nonlethal sampling of fish caudal fins yields valuable stable isotope data for threatened and endangered fishes. Trans. Am. Fish. Soc. 138, 1166–1177 (2009).

    Article  Google Scholar 

  • 73.

    de Moor, F. C., Wilkinson, R. C. & Herbst, H. M. Food and feeding habits of Oreochromis mossambicus (Peters) in hypertrophic Hartbeespoort Dam, South Africa. South Afr. J. Zool. 21, 170–176 (1986).

    Article  Google Scholar 

  • 74.

    Upadhayay, H. R. et al. Isotope mixing models require individual isotopic tracer content for correct quantification of sediment source contributions. Hydrol. Process. 32, 981–989 (2018).

    ADS  Article  Google Scholar 

  • 75.

    Kambikambi, M. J., Chakona, A. & Kadye, W. T. Tracking seasonal food web dynamics and isotopic niche shifts in wild chubbyhead barb Enteromius anoplus within a southern temperate headwater stream. Hydrobiologia 837, 87–107 (2019).

    CAS  Article  Google Scholar 

  • 76.

    Swan, G. J. F. et al. Evaluating Bayesian stable isotope mixing models of wild animal diet and the effects of trophic discrimination factors and informative priors. Methods Ecol. Evol. 2019, 1–11 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    COVID19: an announced pandemic

    Saving Iñupiaq