in

Dynamics of localised nitrogen supply and relevance for root growth of Vicia faba (‘Fuego’) and Hordeum vulgare (‘Marthe’) in soil

  • 1.

    Forde, B. & Lorenzo, H. The nutritional control of root development. Plant Soil 232, 51–68. https://doi.org/10.1023/A:1010329902165 (2001).

    CAS  Article  Google Scholar 

  • 2.

    Hodge, A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162, 9–24. https://doi.org/10.1111/j.1469-8137.2004.01015.x (2004).

    Article  Google Scholar 

  • 3.

    Robinson, D. Tansley review no 73. The responses of plants to non-uniform supplies of nutrients. New Phytol. 127, 635–674 (1994).

    CAS  Article  Google Scholar 

  • 4.

    Yu, P., White, P. J., Hochholdinger, F. & Li, C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 240, 667–678. https://doi.org/10.1007/s00425-014-2150-y (2014).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Osmont, K. S., Sibout, R. & Hardtke, C. S. Hidden branches: developments in root system architecture. Annu. Rev. Plant Biol. 58, 93–113. https://doi.org/10.1146/annurev.arplant.58.032806.104006 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Ahmed, S. et al. Imaging the interaction of roots and phosphate fertiliser granules using 4D X-ray tomography. Plant Soil 401, 125–134. https://doi.org/10.1007/s11104-015-2425-5 (2016).

    CAS  Article  Google Scholar 

  • 7.

    Drew, M. & Saker, L. Nutrient supply and the growth of the seminal root system in barley III. Compensatory increases in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot. 29, 435–451 (1978).

    CAS  Article  Google Scholar 

  • 8.

    Flavel, R. J., Guppy, C. N., Tighe, M. K., Watt, M. & Young, I. M. Quantifying the response of wheat (Triticum aestivum L.) root system architecture to phosphorus in an Oxisol. Plant Soil 385, 303–310. https://doi.org/10.1007/s11104-014-2191-9 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Nacry, P., Bouguyon, E. & Gojon, A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370, 1–29. https://doi.org/10.1007/s11104-013-1645-9 (2013).

    CAS  Article  Google Scholar 

  • 10.

    Bloom, A. J., Frensch, J. & Taylor, A. R. Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Ann. Bot. 97, 867–873. https://doi.org/10.1093/aob/mcj605 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Bloom, A. J., Jackson, L. E. & Smart, D. R. Root-growth as a function of ammonium and nitrate in the root zone. Plant Cell Environ. 16, 199–206. https://doi.org/10.1111/j.1365-3040.1993.tb00861.x (1993).

    CAS  Article  Google Scholar 

  • 12.

    Caba, J. M., Centeno, M. L., Fernandez, B., Gresshoff, P. M. & Ligero, F. Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211, 98–104. https://doi.org/10.1007/s004250000265 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Gerendás, J. & Sattelmacher, B. Influence of nitrogen form and concentration on growth and ionic balance of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum). In Plant nutrition—physiology and applications (ed. van Beusichem, M. L.) 33–37 (Springer, Berlin, 1990).

    Google Scholar 

  • 14.

    Granato, T. C. & Raper, C. D. Jr. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J. Exp. Bot. 40, 263–275. https://doi.org/10.1093/jxb/40.2.263 (1989).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Maizlish, N., Fritton, D. & Kendall, W. Root morphology and early development of maize at varying levels of nitrogen 1. Agron. J. 72, 25–31 (1980).

    CAS  Article  Google Scholar 

  • 16.

    Ogawa, S., Valencia, M. O., Ishitani, M. & Selvaraj, M. G. Root system architecture variation in response to different NH4+ concentrations and its association with nitrogen-deficient tolerance traits in rice. Acta Physiol. Plant. 36, 2361–2372. https://doi.org/10.1007/s11738-014-1609-6 (2014).

    CAS  Article  Google Scholar 

  • 17.

    Sattelmacher, B. & Thoms, K. Root growth and 14C-translocation into the roots of maize (Zea mays L.) as influenced by local nitrate supply. J. Plant Nutr. Soil Sci. 152, 7–10 (1989).

    CAS  Google Scholar 

  • 18.

    Schortemeyer, M., Feil, B. & Stamp, P. Root morphology and nitrogen uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system. Ann. Bot. 72, 107–115. https://doi.org/10.1006/anbo.1993.1087 (1993).

    CAS  Article  Google Scholar 

  • 19.

    Thoms, K. & Sattelmacher, B. Influence of nitrate placement on morphology and physiology of maize (Zea mays) root systems. In Plant nutrition—physiology and applications (ed van Beusichem, M. L.) 29–32 (Springer, Berlin, 1990).

    Google Scholar 

  • 20.

    Tian, Q., Chen, F., Liu, J., Zhang, F. & Mi, G. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J. Plant Physiol. 165, 942–951. https://doi.org/10.1016/j.jplph.2007.02.011 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Gruber, B. D., Giehl, R. F., Friedel, S. & von Wiren, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179. https://doi.org/10.1104/pp.113.218453 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Lima, J. E., Kojima, S., Takahashi, H. & von Wiren, N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 22, 3621–3633. https://doi.org/10.1105/tpc.110.076216 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Remans, T. et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc. Natl. Acad. Sci. U. S. A. 103, 19206–19211. https://doi.org/10.1073/pnas.0605275103 (2006).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Zhang, H. & Forde, B. G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409. https://doi.org/10.1126/science.279.5349.407 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 25.

    Zhang, H., Jennings, A., Barlow, P. W. & Forde, B. G. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. U.S.A. 96, 6529–6534. https://doi.org/10.1073/pnas.96.11.6529 (1999).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Drew, M. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 75, 479–490 (1975).

    CAS  Article  Google Scholar 

  • 27.

    Drew, M. & Saker, L. Nutrient Supply and the Growth of the Seminal Root System in Barley II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 26, 79–90 (1975).

    CAS  Article  Google Scholar 

  • 28.

    Drew, M., Saker, L. & Ashley, T. Nutrient supply and the growth of the seminal root system in barley I. The effect of nitrate concentration on the growth of axes and laterals. J. Exp. Bot. 24, 1189–1202 (1973).

    CAS  Article  Google Scholar 

  • 29.

    Beeckman, F., Motte, H. & Beeckman, T. Nitrification in agricultural soils: impact, actors and mitigation. Curr. Opin. Biotechnol. 50, 166–173. https://doi.org/10.1016/j.copbio.2018.01.014 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Heil, J., Vereecken, H. & Bruggemann, N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur. J. Soil Sci. 67, 23–39. https://doi.org/10.1111/ejss.12306 (2016).

    CAS  Article  Google Scholar 

  • 31.

    Blume, H.-P. et al. Scheffer/Schachtschabel Soil Science (Springer, Berlin, 2015).

    Google Scholar 

  • 32.

    Nieder, R., Benbi, D. K. & Scherer, H. W. Fixation and defixation of ammonium in soils: a review. Biol. Fertil. Soils 47, 1–14. https://doi.org/10.1007/s00374-010-0506-4 (2011).

    CAS  Article  Google Scholar 

  • 33.

    Nommik, H. & Vahtras, K. Retention and fixation of ammonium and ammonia in soils. In Nitrogen in Agricultural Soils 22, (ed. Stevenson, F. J.) 123–171 (Wiley, Madison, Wisconsin, USA, 1982).

    Google Scholar 

  • 34.

    Morris, E. C. et al. Shaping 3D root system architecture. Curr. Biol. 27, R919–R930. https://doi.org/10.1016/j.cub.2017.06.043 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Anghinoni, I. & Barber, S. A. Corn root-growth and nitrogen uptake as affected by ammonium placement. Agron. J. 80, 799–802. https://doi.org/10.2134/agronj1988.00021962008000050021x (1988).

    Article  Google Scholar 

  • 36.

    Anghinoni, I., Magalhaes, J. R. & Barber, S. A. Enzyme-activity, nitrogen uptake and corn growth as affected by ammonium concentration in soil solution. J. Plant Nutr. 11, 131–144. https://doi.org/10.1080/01904168809363791 (1988).

    CAS  Article  Google Scholar 

  • 37.

    Pan, W. L., Madsen, I. J., Bolton, R. P., Graves, L. & Sistrunk, T. Ammonia/ammonium toxicity root symptoms induced by inorganic and organic fertilizers and placement. Agron. J. 108, 2485–2492. https://doi.org/10.2134/agronj2016.02.0122 (2016).

    CAS  Article  Google Scholar 

  • 38.

    Xu, L. et al. Nitrogen transformation and plant growth in response to different urea-application methods and the addition of DMPP. J. Plant Nutr. Soil Sci. 177, 271–277. https://doi.org/10.1002/jpln.201100390 (2014).

    CAS  Article  Google Scholar 

  • 39.

    Zhang, J. C. & Barber, S. A. Corn root distribution between ammonium fertilized and unfertilized soil. Commun. Soil Sci. Plant Anal. 24, 411–419. https://doi.org/10.1080/00103629309368811 (1993).

    Article  Google Scholar 

  • 40.

    Maestre, F. T. & Reynolds, J. F. Small-scale spatial heterogeneity in the vertical distribution of soil nutrients has limited effects on the growth and development of Prosopis glandulosa seedlings. Plant Ecol. 183, 65–75. https://doi.org/10.1007/s11258-005-9007-1 (2006).

    Article  Google Scholar 

  • 41.

    Rabbi, S. M., Guppy, C., Flavel, R., Tighe, M. & Young, I. Root plasticity not evident in N-enriched soil volumes for wheat (Triticum aestivum L.) and Barley (Hordeum vulgare L.) varieties. Commun. Soil Sci. Plant Anal. 48, 2002–2012 (2017).

    CAS  Article  Google Scholar 

  • 42.

    Van Vuuren, M., Robinson, D. & Griffiths, B. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178, 185–192 (1996).

    Article  Google Scholar 

  • 43.

    Hodge, A., Robinson, D., Griffiths, B. S. & Fitter, A. H. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ. 22, 811–820. https://doi.org/10.1046/j.1365-3040.1999.00454.x (1999).

    Article  Google Scholar 

  • 44.

    Hodge, A., Stewart, J., Robinson, D., Griffiths, B. S. & Fitter, A. H. Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol. 139, 479–494. https://doi.org/10.1046/j.1469-8137.1998.00216.x (1998).

    Article  Google Scholar 

  • 45.

    Hodge, A., Stewart, J., Robinson, D., Griffiths, B. S. & Fitter, A. H. Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol. Biochem. 31, 1517–1530. https://doi.org/10.1016/S0038-0717(99)00070-X (1999).

    CAS  Article  Google Scholar 

  • 46.

    Li, H. B. et al. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil 376, 151–163. https://doi.org/10.1007/s11104-013-1965-9 (2014).

    CAS  Article  Google Scholar 

  • 47.

    Abalos, D., Sanz-Cobena, A., Misselbrook, T. & Vallejo, A. Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere 89, 310–318. https://doi.org/10.1016/j.chemosphere.2012.04.043 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 48.

    Slangen, J. H. G. & Kerkhoff, P. Nitrification inhibitors in agriculture and horticulture—a literature-review. Fertil. Res. 5, 1–76. https://doi.org/10.1007/Bf01049492 (1984).

    CAS  Article  Google Scholar 

  • 49.

    Zaman, M., Zaman, S., Nguyen, M. L., Smith, T. J. & Nawaz, S. The effect of urease and nitrification inhibitors on ammonia and nitrous oxide emissions from simulated urine patches in pastoral system: a two-year study. Sci. Tot. Environ. 465, 97–106. https://doi.org/10.1016/j.scitotenv.2013.01.014 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Metzner, R. et al. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11, 17. https://doi.org/10.1186/s13007-015-0060-z (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Beuters, P., Scherer, H. W., Spott, O. & Vetterlein, D. Impact of potassium on plant uptake of non-exchangeable NH4+-N. Plant Soil 387, 37–47. https://doi.org/10.1007/s11104-014-2275-6 (2014).

    CAS  Article  Google Scholar 

  • 52.

    Vetterlein, D., Kuhn, T., Kaiser, K. & Jahn, R. Illite transformation and potassium release upon changes in composition of the rhizophere soil solution. Plant Soil 371, 267–279. https://doi.org/10.1007/s11104-013-1680-6 (2013).

    CAS  Article  Google Scholar 

  • 53.

    VDLUFA, M. Band 1. Die Untersuchung von Böden (VDLUFA-Verlag, Darmstad, 1991) ((in German)).

    Google Scholar 

  • 54.

    Koebernick, N. et al. In situ visualization and quantification of three-dimensional root system architecture and growth using X-ray computed tomography. Vadose Zone J. https://doi.org/10.2136/vzj2014.03.0024 (2014).

    Article  Google Scholar 

  • 55.

    Blaser, S. R. G. A., Schlüter, S. & Vetterlein, D. How much is too much?-Influence of X-ray dose on root growth of faba bean (Vicia faba) and barley (Hordeum vulgare). PLoS ONE 13, e0193669. https://doi.org/10.1371/journal.pone.0193669 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Schlüter, S., Blaser, S. R. G. A., Weber, M., Schmidt, V. & Vetterlein, D. Quantification of root growth patterns from the soil perspective via root distance models. Front. Plant Sci. 9, 1084. https://doi.org/10.3389/fpls.2018.01084 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Flavel, R. J. et al. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. J. Exp. Bot. 63, 2503–2511. https://doi.org/10.1093/jxb/err421 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Doube, M. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079. https://doi.org/10.1016/j.bone.2010.08.023 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Kirschke, T., Spott, O. & Vetterlein, D. Impact of urease and nitrification inhibitor on NH4+ and NO3 dynamic in soil after urea spring application under field conditions evaluated by soil extraction and soil solution sampling. J. Plant Nutr. Soil Sci. 182, 441–450. https://doi.org/10.1002/jpln.201800513 (2019).

    CAS  Article  Google Scholar 

  • 61.

    61Bergmann, W. Farbatlas Ernährungsstörungen bei Kulturpflanzen: visuelle und analytische Diagnose. (1986).

  • 62.

    Bennett, W. F., Pesek, J. & Hanway, J. J. Effect of nitrate and ammonium on growth of corn in nutrient solution sand culture. Agron. J. 56, 342–345 (1964).

    CAS  Article  Google Scholar 

  • 63.

    Magalhaes, J. R. & Wilcox, G. E. Tomato growth and nutrient-uptake patterns as influenced by nitrogen form and light-intensity. J. Plant Nutr. 6, 941–956. https://doi.org/10.1080/01904168309363157 (1983).

    CAS  Article  Google Scholar 

  • 64.

    Ganmore-Neumann, R. & Kafkafi, U. root temperature and percentage NO3/NH4+ effect on tomato plant development I. Morphology and growth 1. Agron. J. 72, 758–761 (1980).

    CAS  Article  Google Scholar 

  • 65.

    Einsmann, J. C., Jones, R. H., Pu, M. & Mitchell, R. J. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J. Ecol. 87, 609–619. https://doi.org/10.1046/j.1365-2745.1999.00376.x (1999).

    Article  Google Scholar 

  • 66.

    Gao, W., Blaser, S. R. G. A., Schluter, S., Shen, J. B. & Vetterlein, D. Effect of localised phosphorus application on root growth and soil nutrient dynamics in situ—comparison of maize (Zea mays) and faba bean (Vicia faba) at the seedling stage. Plant Soil 441, 469–483. https://doi.org/10.1007/s11104-019-04138-2 (2019).

    CAS  Article  Google Scholar 

  • 67.

    Britto, D. T. & Kronzucker, H. J. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567–584. https://doi.org/10.1078/0176-1617-0774 (2002).

    CAS  Article  Google Scholar 

  • 68.

    Adjel, F., Bouzerzour, H. & Benmahammed, A. Salt stress effects on seed germination and seedling growth of barley (Hordeum vulgare L.) Genotypes. J. Agric. Sustain. 3, 223–237 (2013).

    Google Scholar 

  • 69.

    Ahmed, A. K., Tawfik, K. & Abd El-Gawad, Z. Tolerance of seven faba bean varieties to drought and salt stresses. Res. J. Agric. Biol. Sci. 4, 175–186 (2008).

    Google Scholar 

  • 70.

    Link, W. et al. Genotypic variation for drought tolerance in Vicia faba. Plant Breed. 118, 477–483. https://doi.org/10.1046/j.1439-0523.1999.00412.x (1999).

    Article  Google Scholar 

  • 71.

    Varshney, R. K. et al. Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Res. 126, 171–180. https://doi.org/10.1016/j.fcr.2011.10.008 (2012).

    Article  Google Scholar 

  • 72.

    Wilcox, G. E., Magalhaes, J. R. & Silva, F. L. I. M. Ammonium and nitrate concentrations as factors in tomato growth and nutrient-uptake. J. Plant Nutr. 8, 989–998. https://doi.org/10.1080/01904168509363401 (1985).

    Article  Google Scholar 

  • 73.

    Elamin, O. M. & Wilcox, G. E. Nitrogen form ratio influence on muskmelon growth, composition, and manganese toxicity. J. Am. Soc. Hortic. Sci. 111, 320–322 (1986).

    Google Scholar 

  • 74.

    Handa, S., Warren, H. L., Huber, D. M. & Tsai, C. Y. Nitrogen nutrition and seedling development of normal and opaque-2 maize genotypes. Can. J. Plant Sci. 64, 885–894. https://doi.org/10.4141/cjps84-121 (1984).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    COVID19: an announced pandemic

    Saving Iñupiaq