in

Warming drives ecological community changes linked to host-associated microbiome dysbiosis

  • 1.

    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    Article  Google Scholar 

  • 2.

    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).

    Article  Google Scholar 

  • 3.

    Penuelas, J., Filella, I. & Comas, P. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob. Change Biol. 8, 531–544 (2002).

    Article  Google Scholar 

  • 4.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    CAS  Article  Google Scholar 

  • 5.

    Freeman, B. G., Yaw, J. A. L., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).

    Article  Google Scholar 

  • 6.

    Draper, A. M. & Weissburg, M. J. Impacts of global warming and elevated CO2 on sensory behavior in predator–prey interactions: a review and synthesis. Front. Ecol. Evol. 7, 72 (2019).

    Article  Google Scholar 

  • 7.

    Romero, G. Q. et al. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8, 1087–1091 (2018).

    Article  Google Scholar 

  • 8.

    Hudson, P. J., Cattadori, I. M., Boag, B. & Dobson, A. P. Climate disruption and parasite–host dynamics: patterns and processes associated with warming and the frequency of extreme climatic events. J. Helminthol. 80, 175–182 (2006).

    CAS  Article  Google Scholar 

  • 9.

    Robinson, C. J., Bohannan, B. J. M. & Young, V. B. From structure to function: the ecology of host-associated microbial communities. Microbiol. Mol. Biol. Rev. 74, 453–476 (2010).

    CAS  Article  Google Scholar 

  • 10.

    Longo, A. V. & Zamudio, K. R. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin. Mol. Ecol. 26, 4787–4797 (2017).

    Article  Google Scholar 

  • 11.

    Longo, A. V., Savage, A. E., Hewson, I. & Zamudio, K. R. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R. Soc. Open Sci. 2, 140377 (2015).

    Article  CAS  Google Scholar 

  • 12.

    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18, 1561–1565 (2016).

    Article  Google Scholar 

  • 13.

    Fontaine, S. S., Novarro, A. J. & Kohl, K. D. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J. Exp. Biol. 221, 187559 (2018).

    Article  Google Scholar 

  • 14.

    Woodhams, D. C. et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 9, e96375 (2014).

    Article  CAS  Google Scholar 

  • 15.

    Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).

    Article  Google Scholar 

  • 16.

    Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).

    Article  Google Scholar 

  • 17.

    Meyer, E. A., Cramp, R. L., Bernal, M. H. & Franklin, C. E. Changes in cutaneous microbial abundance with sloughing: possible implications for infection and disease in amphibians. Dis. Aquat. Organ. 101, 235–242 (2012).

    Article  Google Scholar 

  • 18.

    Flury, S. & Gessner, M. O. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh. Appl. Environ. Microbiol. 77, 803–809 (2011).

    CAS  Article  Google Scholar 

  • 19.

    Belden, L. K. & Harris, R. N. Infectious diseases in wildlife: the community ecology context. Front. Ecol. Environ. 5, 533–539 (2007).

    Article  Google Scholar 

  • 20.

    Bernabé, T. N. et al. Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. Glob. Change Biol. 24, 3170–3186 (2018).

    Article  Google Scholar 

  • 21.

    Hoekman, D. Turning up the heat: temperature influences the relative importance of top-down and bottom-up effects. Ecology 91, 2819–2825 (2010).

    Article  Google Scholar 

  • 22.

    Becker, C. G. et al. Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proc. R. Soc. B 286, 20191114 (2019).

    Article  Google Scholar 

  • 23.

    Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786 (2017).

    Article  Google Scholar 

  • 24.

    Greenspan, S. E. et al. Arthropod–bacteria interactions influence assembly of aquatic host microbiome and pathogen defense. Proc. R. Soc. B 286, 20190924 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Walker, W. A. in The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis (eds Floch, M. H. et al.) 227–232 (Academic Press, 2016).

  • 26.

    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Jin Song, S. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34–40 (2018).

    Article  Google Scholar 

  • 29.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

  • 30.

    Sabagh, L. T., Ferreira, G. L., Branco, C. W. C., Rocha, C. F. D. & Dias, N. Y. N. Larval diet in bromeliad pools: a case study of tadpoles of two species in the genus Scinax (Hylidae). Copeia 2012, 683–689 (2012).

    Article  Google Scholar 

  • 31.

    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).

    Article  Google Scholar 

  • 32.

    Becker, C. G., Longo, A. V., Haddad, C. F. B. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. R. Soc. B 284, 20170582 (2017).

    Article  Google Scholar 

  • 33.

    Fukami, T. & Nakajima, M. Community assembly: alternative stable states or alternative transient states? Ecol. Lett. 14, 973–984 (2011).

    Article  Google Scholar 

  • 34.

    Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).

    CAS  Article  Google Scholar 

  • 35.

    Longo, A. V. & Zamudio, K. R. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME J. 11, 349–361 (2017).

    Article  Google Scholar 

  • 36.

    Friedman, B. A. & Dugan, P. R. Identification of Zoogloea species and the relationship to zoogloeal matrix and floc formation. J. Bacteriol. 95, 1903–1909 (1968).

    CAS  Article  Google Scholar 

  • 37.

    Gao, N. et al. Both widespread PEP-CTERM proteins and exopolysaccharides are required for floc formation of Zoogloea resiniphila and other activated sludge bacteria. Environ. Microbiol. 20, 1677–1692 (2018).

    CAS  Article  Google Scholar 

  • 38.

    Merritt, R. W., Dadd, R. H. & Walker, E. D. Feeding behavior, natural food, and nutritional relationships of larval mosquitos. Annu. Rev. Entomol. 37, 349–376 (1992).

    CAS  Article  Google Scholar 

  • 39.

    Moghadam, F. S. & Zimmer, M. Effects of warming and nutrient enrichment on how grazing pressure affects leaf litter–colonizing bacteria. J. Environ. Qual. 43, 851–858 (2014).

    Article  CAS  Google Scholar 

  • 40.

    Zander, A., Bersier, L. & Gray, S. M. Effects of temperature variability on community structure in a natural microbial food web. Glob. Change Biol. 23, 56–67 (2017).

    Article  Google Scholar 

  • 41.

    Aguirre, A. A. & Tabor, G. M. Global factors driving emerging infectious diseases: Impact on wildlife populations. Ann. NY Acad. Sci. 1149, 1–3 (2008).

    Article  Google Scholar 

  • 42.

    Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7, 9349 (2017).

    Article  CAS  Google Scholar 

  • 43.

    Neely, W. J. et al. Synergistic effects of warming and disease linked to high mortality in cool-adapted terrestrial frogs. Biol. Conserv. 245, 108521 (2020).

    Article  Google Scholar 

  • 44.

    Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 (2013).

    Article  Google Scholar 

  • 45.

    Raffel, T. R., Halstead, N. T., Mcmahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282, 20142039 (2015).

    Article  Google Scholar 

  • 46.

    Greenspan, S. E. et al. White blood cell profiles in amphibians help to explain disease susceptibility following temperature shifts. Dev. Comp. Immunol. 77, 280–286 (2017).

    CAS  Article  Google Scholar 

  • 47.

    Dézerald, O. et al. Food-web structure in relation to environmental gradients and predator–prey ratios in tank-bromeliad ecosystems. PLoS ONE 8, e71735 (2013).

    Article  CAS  Google Scholar 

  • 48.

    Kitching, R. L. Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata (Cambridge Univ. Press, 2000).

  • 49.

    Richardson, B. A. The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica 31, 321–336 (1999).

    Article  Google Scholar 

  • 50.

    Leroy, C. et al. What drives detrital decomposition in Neotropical tank bromeliads? Hydrobiologia 802, 85–95 (2017).

    Article  Google Scholar 

  • 51.

    Giongo, A. et al. Seasonal physiological parameters and phytotelmata bacterial diversity of two bromeliad species (Aechmea gamosepala and Vriesea platynema) from the Atlantic Forest of Southern Brazil. Diversity 11, 111 (2019).

    CAS  Article  Google Scholar 

  • 52.

    Frank, J. H. & Lounibos, L. P. Insects and allies associated with bromeliads: a review. Terr. Arthropod Rev. 1, 125–153 (2009).

    CAS  Article  Google Scholar 

  • 53.

    Ruano-Fajardo, G., Toledo, L. F. & Mott, T. Jumping into a trap: high prevalence of chytrid fungus in the preferred microhabitats of a bromeliad-specialist frog. Dis. Aquat. Organ. 121, 223–232 (2016).

    Article  Google Scholar 

  • 54.

    Gomez-Hoyos, D. A. et al. Phytotelmata selection by anurans and implications for their conservation at Las Tablas Protected Zone, Costa Rica. Alytes 35, 1–11 (2018).

    Google Scholar 

  • 55.

    Haddad, C. F. B. et al. Guia dos Anfíbios da Mata Atlântica: Diversidade e Biologia (Anolis Books, 2013).

  • 56.

    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).

    Google Scholar 

  • 57.

    Oksanen, J. et al. vegan: community ecology package. R package version 2.4-1 https://CRAN.R-project.org/package=vegan (2016).

  • 58.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 59.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS  Article  Google Scholar 

  • 60.

    Caporaso, J. G. et al. EMP 16S Illumina Amplicon Protocol (protocols.io, 2018).

  • 61.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    CAS  Article  Google Scholar 

  • 62.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 848–857 (2019).

    Article  CAS  Google Scholar 

  • 63.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  Article  Google Scholar 

  • 64.

    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–16 (2017).

    Google Scholar 

  • 65.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS  Article  Google Scholar 

  • 66.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  CAS  Google Scholar 

  • 67.

    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    Article  Google Scholar 

  • 68.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS  Article  Google Scholar 

  • 69.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    CAS  Article  Google Scholar 

  • 70.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    CAS  Article  Google Scholar 

  • 71.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article  Google Scholar 

  • 72.

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  Article  Google Scholar 

  • 73.

    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).

    CAS  Article  Google Scholar 

  • 74.

    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).

    Article  Google Scholar 

  • 75.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in R for ecology. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  • 76.

    Deegan, J. On the occurrence of standardized regression coefficients greater than one. Educ. Psychol. Meas. 38, 873–888 (1978).

    Article  Google Scholar 

  • 77.

    JMP v.14.0.0 (SAS Institute, 2019).

  • 78.

    Warnes, G. et al. gplots: various R programming tools for plotting data. R package version 3.0.1.1 https://CRAN.R-project.org/package=gplots (2019).


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe