in

Compound specific isotope analysis of lipid residues provides the earliest direct evidence of dairy product processing in South Asia

[adace-ad id="91168"]
  • 1.

    Greenfield, H. J. The secondary products revolution: The past, the present and the future. World Archaeol. 42, 29–54 (2010).

    Google Scholar 

  • 2.

    Marciniak, A. The secondary products revolution: Empirical evidence and its current zooarchaeological critique. J. World Prehist. 24, 117–130 (2011).

    Google Scholar 

  • 3.

    Sherratt, A. The secondary exploitation of animals in the Old World. World Archaeol. 15, 90–104 (1983).

    Google Scholar 

  • 4.

    Patel, A. K. & Meadow, R. H. South Asian contribution to animal domestication and pastoralism: Bones, genes and archaeology. In The Oxford Handbook of Zooarchaeology (eds Albarella, U. et al.) 1–27 (Oxford University Press, Oxford, 2017). https://doi.org/10.1093/oxfordhb/9780199686476.001.0001.

    Google Scholar 

  • 5.

    Meadow, R. H. & Patel, A. K. Prehistoric pastoralism in northwestern South Asia from the Neolithic through the Harappan period. In Indus Ethnobiology: New perspective from the field (eds Weber, S. A. & Belcher, W. R.) 65–94 (Lexingtion Books, Lanham, 2003).

    Google Scholar 

  • 6.

    Wright, R. P. The Ancient Indus: Urbanism, Economy, and Society (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 7.

    Fuller, D. Q. Indus and non-Indus agricultural traditions: Local developments and crop adoptions on the Indian peninsula. In Indus Ethnobiology (eds Weber, S. & Belcher, W. R.) 243–396 (Lexington Books, Lanham, 2003).

    Google Scholar 

  • 8.

    Meadow, R. H. Pre- and Proto-Historic agriculture and pastoral transformations in northwestern and South Asia. Rev. Archaeol. 19, 12–21 (1998).

    Google Scholar 

  • 9.

    Pokharia, A. K. et al. Archaeobotany and archaeology at Kanmer, a Harappan site in Kachchh, Gujarat: Evidence for adaptation in response to climatic variability. Curr. Sci. 100, 1833–1846 (2011).

    Google Scholar 

  • 10.

    Rissman, P. C. Migratory Pastoralism in Western India in the Second Millennium B.C.: The Evidence from Oriyo Timbo (Chiroda). (University of Microfilms International, 1985).

  • 11.

    Weber, S., Kashyap, A. & Harriman, D. Does size matter: The role and significance of cereal grains in the Indus Civilization. Archaeol. Anthropol. Sci. 2, 35–43 (2010).

    Google Scholar 

  • 12.

    Weber, S. A. Plants and Harappan subsistence: An example of stability and change from Rojdi (Oxford & IBH and American Institute of Indian Studies, Oxford, 1991).

    Google Scholar 

  • 13.

    Goyal, P. et al. Subsistence system, paleoecology, and 14C chronology at Kanmer, a Harappan site in Gujarat India. Radiocarbon 55, 141–150 (2013).

    CAS  Google Scholar 

  • 14.

    Pokharia, A. K., Kharakwal, J. S. & Srivastava, A. Archaeobotanical evidence of millets in the Indian subcontinent with some observations on their role in the Indus Civilization. J. Archaeol. Sci. 42, 442–455 (2014).

    Google Scholar 

  • 15.

    Pokharia, A. K. et al. Altered cropping pattern and cultural continuation with declined prosperity following abrupt and extreme arid event at ~4,200 yrs BP: Evidence from an Indus archaeological site Khirsara, Gujarat, western India. PLoS ONE 12, 1–17 (2017).

    Google Scholar 

  • 16.

    Chase, B. Social change at the Harappan settlement of Gola Dhoro: A reading from animal bones. Antiquity 84, 528–543 (2010).

    Google Scholar 

  • 17.

    Chase, B. On the pastoral economies of Harappan Gujarat: Faunal analyses at Shikarpur in context. Herit. J. Multidiscip. Stud. Archaeol. 2, 1–22 (2014).

    Google Scholar 

  • 18.

    Chase, B., Ajithprasad, P., Rajesh, S. V., Patel, A. & Sharma, B. Materializing Harappan identities: Unity and diversity in the borderlands of the Indus Civilization. J. Anthropol. Archaeol. 35, 63–78 (2014).

    Google Scholar 

  • 19.

    Belcher, W. R. Marine exploitation in the Third Millennium BC- The eastern coast of Pakistan. Paleorient 31, 79–85 (2005).

    Google Scholar 

  • 20.

    Belcher, W. R. Fish exploitation of the Indus Valley Tradition. In Indus Ethnobiology 95–174 (Lexington Books, Lanham, 2003).

    Google Scholar 

  • 21.

    Chase, B., Meiggs, D., Ajithprasad, P. & Slater, P. A. What is left behind: Advancing interpretation of pastoral land-use in Harappan Gujarat using herbivore dung to examine bioshphere strontium isotope (87Sr/86Sr) variation. J. Archaeol. Sci. 92, 1–12 (2018).

    Google Scholar 

  • 22.

    Chase, B., Meiggs, D., Ajithprasad, P. & Slater, P. A. Pastoral land-use of the Indus Civilization in Gujarat: Faunal analyses and biogenic isotopes at Bagasra. J. Archaeol. Sci. 50, 1–15 (2014).

    Google Scholar 

  • 23.

    Miller, L. J. Secondary products and urbanism in South Asia: The evidence for traction at Harappa. In Indus Ethnobiology: New perspective from the field (eds Weber, S. A. & Belcher, W. R.) 251–326 (Lexington Books, Lanham, 2003).

    Google Scholar 

  • 24.

    Bourgeois, G. & Gouin, P. Résultats D ’ une analyse de traces organiques fossiles dans une ‘Faisselle’ Harappéenne. Paléorient 21, 125–128 (1995).

    Google Scholar 

  • 25.

    Evershed, R. P., Dudd, S. N., Copley, M. S. & Mukherjee, A. Identification of animal fats via compound specific δ13C values of individual fatty acids: Assessments of results for reference fats and lipid extracts of archaeological pottery vessels. Doc. Praehist. 29, 73–96 (2002).

    Google Scholar 

  • 26.

    Copley, M. S., Berstan, R., Straker, V., Payne, S. & Evershed, R. P. Dairying in antiquity. II. Evidence from absorbed lipid residues dating to the British Bronze Age. J. Archaeol. Sci. 32, 505–521 (2005).

    Google Scholar 

  • 27.

    Spangenberg, J. E., Jacomet, S. & Schibler, J. Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland—evidence for dairying in the late Neolithic. J. Archaeol. Sci. 33, 1–13 (2006).

    Google Scholar 

  • 28.

    Craig, O. E. et al. Stable isotope analysis of Late Upper Palaeolithic human and faunal remains from Grotta del Romito (Cosenza) Italy. J. Archaeol. Sci. 37, 2504–2512 (2010).

    Google Scholar 

  • 29.

    Craig, O. E. et al. Earliest evidence for the use of pottery. Nature 496, 351–354 (2013).

    CAS  PubMed  ADS  Google Scholar 

  • 30.

    Craig, O. E., Taylor, G., Mulville, J., Collins, M. J. & Parker, P. M. The identification of prehistoric dairying activities in the Western Isles of Scotland: an integrated biomolecular approach. J. Archaeol. Sci. 32, 91–103 (2005).

    Google Scholar 

  • 31.

    Evershed, R. P. Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry 50, 895–924 (2008).

    CAS  Google Scholar 

  • 32.

    Craig, O. E., Love, G. D., Isaksson, S., Taylor, G. & Snape, C. E. Stable carbon isotopic characterisation of free and bound lipid constituents of archaeological ceramic vessels released by solvent extraction, alkaline hydrolysis and catalytic hydropyrolysis. J. Anal. Appl. Pyrolysis 71, 613–634 (2004).

    CAS  Google Scholar 

  • 33.

    Dudd, S. N. & Evershed, R. P. Direct demonstration of milk as an element of archaeological economies. Science 282, 1478–1481 (1998).

    CAS  PubMed  Google Scholar 

  • 34.

    Buonasera, T. Y., Tremayne, A. H., Darwent, C. M., Eerkens, J. W. & Mason, O. K. Lipid biomarkers and compound specific δ13C analysis indicate early development of a dual-economic system for the Arctic Small Tool tradition in northern Alaska. J. Archaeol. Sci. 61, 129–138 (2015).

    CAS  Google Scholar 

  • 35.

    Meier-Augenstein, W. Stable isotope analysis of fatty acids by gas chromatography–isotope ratio mass spectrometry. Anal. Chim. Acta 465, 63–79 (2002).

    CAS  Google Scholar 

  • 36.

    Mottram, H. R., Dudd, S. N., Lawrence, G. J., Stott, A. W. & Evershed, R. P. New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. J. Chromatogr. A 833, 209–221 (1999).

    CAS  Google Scholar 

  • 37.

    Gregg, M. W., Banning, E. B., Gibbs, K. & Slater, G. F. Subsistence practices and pottery use in Neolithic Jordan: Molecular and isotopic evidence. J. Archaeol. Sci. 36, 937–946 (2009).

    Google Scholar 

  • 38.

    Copley, M. S. et al. Direct chemical evidence for widespread dairying in prehistoric Britain. Proc. Natl. Acad. Sci. 100, 1524–1529 (2003).

    CAS  PubMed  ADS  Google Scholar 

  • 39.

    Dunne, J., di Lernia, S., Chłodnicki, M., Kherbouche, F. & Evershed, R. P. Timing and pace of dairying inception and animal husbandry practices across Holocene North Africa. Quat. Int. https://doi.org/10.1016/j.quaint.2017.06.062 (2017).

    Article  Google Scholar 

  • 40.

    Dunne, J. et al. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486, 390–394 (2012).

    CAS  PubMed  ADS  Google Scholar 

  • 41.

    Copley, M. S., Clark, K. & Evershed, R. P. Organic-residue analysis of pottery vessels and clay balls. In Changing Materialities at Çatalhoyuk: Reports from the 1995–99 Seasons 169–174 (McDonald Institute for Archaeological Research, Cambridge, 2005).

    Google Scholar 

  • 42.

    Roffet-Salque, M., Lee, M. R. F., Timpson, A. & Evershed, R. P. Impact of modern cattle feeding practices on milk fatty acid stable carbon isotope compositions emphasise the need for caution in selecting reference animal tissues and products for archaeological investigations. Archaeol. Anthropol. Sci. 9, 1343–1348 (2017).

    Google Scholar 

  • 43.

    Craig, O. E. et al. Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. Proc. Natl. Acad. Sci. 108, 17910–17915 (2011).

    CAS  PubMed  ADS  Google Scholar 

  • 44.

    Salque, M. et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522–525 (2013).

    CAS  PubMed  ADS  Google Scholar 

  • 45.

    Correa-Ascencio, M., Robertson, I. G., Cabrera-Cortés, O., Cabrera-Castro, R. & Evershed, R. P. Pulque production from fermented agave sap as a dietary supplement in Prehispanic Mesoamerica. Proc. Natl. Acad. Sci. 111, 14223–14228 (2014).

    CAS  PubMed  ADS  Google Scholar 

  • 46.

    Kimpe, K., Jacobs, P. A. & Waelkens, M. Analysis of oil used in late Roman oil lamps with different mass spectrometric techniques revealed the presence of predominantly olive oil together with traces of animal fat. J. Chromatogr. A 937, 87–95 (2001).

    CAS  PubMed  Google Scholar 

  • 47.

    Eerkens, J. The preservation and identification of Piñon resins by GC-MS in pottery from the western Great Basin. Archaeometry 44, 95–105 (2002).

    CAS  Google Scholar 

  • 48.

    Gregg, M. W., Brettell, R. & Stern, B. Bitumen in Neolithic Iran: Biomolecular and isotopic evidence. In Archaeological Chemistry 137–151 (American Chemical Society, Washington, 2007).

    Google Scholar 

  • 49.

    Lucquin, A., March, R. J. & Cassen, S. Analysis of adhering organic residues of two “coupes-à-socles” from the Neolithic funerary site “La Hougue Bie” in Jersey: evidences of birch bark tar utilisation. J. Archaeol. Sci. 34, 704–710 (2007).

    Google Scholar 

  • 50.

    Stacey, R., Cartwright, C., Tanimoto, S. & Villing, A. Coatings and contents: Investigations of residues on four fragmentary sixth-century B.C. vessels from Naukratis (Egypt). Br. Museum Tech. Res. Bull. 4, 19–26 (2010).

    Google Scholar 

  • 51.

    Brecoulaki, H., Andreotti, A., Bonaduce, I., Colombini, M. P. & Lluveras, A. Characterization of organic media in the wall-paintings of the “Palace of Nestor” at Pylos, Greece: Evidence for a secco painting techniques in the Bronze Age. J. Archaeol. Sci. 39, 2866–2876 (2012).

    CAS  Google Scholar 

  • 52.

    Spades, S. & Russ, J. GC–MS analysis of lipids in prehistoric rock paints and associated oxalate coatings from the Lower Pecos Region, Texas. Archaeometry 47, 115–126 (2005).

    CAS  Google Scholar 

  • 53.

    Eckmeier, E. & Wiesenberg, G. L. B. Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for prehistoric biomass burning. J. Archaeol. Sci. 36, 1590–1596 (2009).

    Google Scholar 

  • 54.

    Chakraborty, K. S. et al. Enamel isotopic data from the domesticated animals at Kotada Bhadli, Gujarat, reveals specialized animal husbandry during the Indus Civilization. J. Archaeol. Sci. Rep. 21, 2 (2018).

    Google Scholar 

  • 55.

    Chakraborty, K. S. Subsistence-Based Economy and the Regional Interaction Processes of the Indus Civilization Borderland in Kachchh, Gujarat: A Bio-Molecular Perspective (University of Toronto, Toronto, 2019).

    Google Scholar 

  • 56.

    Shirvalkar, P. & Rawat, Y. S. Excavation at Kotada Bhadli, District Kachchh, Gujarat: A perliminary report. Puratattva 42, 182–201 (2012).

    Google Scholar 

  • 57.

    Goyal, P. Observations on faunal remains recovered from Kotada Bhadli. In Excavation at Kotada Bhadli (eds Shirvalkar, P. & Prasad, E.) 136–149 (Archaeological Survey of India, New Delhi, 2020).

    Google Scholar 

  • 58.

    Joglekar, P. P. & Goyal, P. Faunal remains from Shikarpur, a Harappan site in Gujarat India. Iran. J. Archaeol. Stud. 1, 15–25 (2011).

    Google Scholar 

  • 59.

    Goyal, P. & Joglekar, P. P. Archaeozoological remains from the site of Kanmer. In Excavation at Kanmer (2005–2006 to 2008–2009): Kanmer archaeological research project an Indo-Japanese collaboration (eds Kharakwal, J. S. et al.) 767–794 (Indus Project Research Institute for Humanity and Nature, Kyoto, 2012).

    Google Scholar 

  • 60.

    Meadow, R. H. & Patel, A. K. Prehistoric pastoralism in northwestern South Asia from the Neolithic through the Harappan Period. In Indus Ethnobiology: New perspective from the field (eds Weber, S. & Belcher, W. R.) 65–94 (Lexington Books, Lanham, 2003).

    Google Scholar 

  • 61.

    Patel, A. The Primary Pastoral economy of Dholavira: A first look at animals and urban life in third millennium Kutch. In South Asian Archaeology 1995 (ed. Allchin, B.) 101–113 (The Ancient India and Iran Trust, Cambridge, 1997).

    Google Scholar 

  • 62.

    Miller, L. J. Urban Economies in Early States: The Secondary Products Revolution in the Indus Civilization (New York University, New York, 2004).

    Google Scholar 

  • 63.

    Halstead, P. Mortality models and milking: Problems of uniformitarianism, optimality and equifinality reconsidered. Anthropozoologica https://doi.org/10.4319/lo.2013.58.2.0489 (1998).

    Article  Google Scholar 

  • 64.

    Gillis, R. E. et al. The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proc. R. Soc. B Biol. Sci. 284, 2 (2017).

    Google Scholar 

  • 65.

    Sternberg, L. O., Deniro, M. J. & Johnson, H. B. Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiol. 74, 557–561 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Zhang, C. et al. Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes. Earth Planet. Sci. Lett. 333–334, 70–82 (2012).

    ADS  Google Scholar 

  • 67.

    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    CAS  ADS  Google Scholar 

  • 68.

    Sternberg, L. O., Deniro, M. J. & Ting, I. P. Carbon, hydrogen, and oxygen isotope ratios of cellulose from plants having intermediary photosynthetic modes. Plant Physiol. 74, 104–107 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Smith, B. N. & Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Correa-Ascencio, M. & Evershed, P. R. High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Anal. Methods 6, 1330–1340 (2014).

    CAS  Google Scholar 

  • 71.

    Evershed, R. P., Heron, C. & Goad, L. J. Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst 115, 1339–1342 (1990).

    CAS  ADS  Google Scholar 

  • 72.

    Papakosta, V., Smittenberg, R. H., Gibbs, K., Jordan, P. & Isaksson, S. Extraction and derivatization of absorbed lipid residues from very small and very old samples of ceramic potsherds for molecular analysis by gas chromatography-mass spectrometry (GC-MS) and single compound stable carbon isotope analysis by gas chromatogra. Microchem. J. 123, 196–200 (2015).

    CAS  Google Scholar 

  • 73.

    Demirci, Ö, Lucquin, A., Craig, O. E. & Raemaekers, D. C. M. First lipid residue analysis of Early Neolithic pottery from Swifterbant ( the Netherlands, ca 4300–4000 BC ). Archaeol. Anthropol. Sci. https://doi.org/10.1007/s12520-020-01062-w (2020).

    Article  Google Scholar 

  • 74.

    Carrer, F. et al. Chemical analysis of pottery demonstrates prehistoric origin for high-altitude alpine dairying. PLoS ONE 11, e0151442 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Heron, C. et al. First molecular and isotopic evidence of millet processing in prehistoric pottery vessels. Sci. Rep. 6, 1–9 (2016).

    Google Scholar 

  • 76.

    Pecci, A. & Cau Ontiveros, M. A. Report on the Analyses of the Organic Residues in Archaeological Samples from the Project ‘Excavating the Roman Peasant’. University of Barcelona (2010).

  • 77.

    Gregg, M. W. & Slater, G. F. A new method for extraction, isolation and transesterification of free fatty acids from archaeological pottery. Archaeometry 52, 833–854 (2010).

    CAS  Google Scholar 

  • 78.

    Copley, M. S. et al. Detection of palm fruit lipids in archaeological pottery from Qasr Ibrim, Egyptian Nubia. Proc. R. Soc. B Biol. Sci. 268, 593–597 (2001).

    CAS  Google Scholar 

  • 79.

    Evershed, R. P., Copley, M. S., Dickson, L. & Hansel, F. A. Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. Archaeometry 50, 101–113 (2008).

    CAS  Google Scholar 

  • 80.

    Hansel, F. A., Copley, M. S., Madureira, L. A. S. & Evershed, R. P. Thermally produced ω-(o-alkylphenyl)alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Lett. 45, 2999–3002 (2004).

    CAS  Google Scholar 

  • 81.

    Meadow, R. H. Prehistoric wild sheep and sheep domestication on the eastern margin of the Middle East. in Animal Domestication and Its Cultural Context (eds. Crabtree, P. J., Campana, D. V. & Ryan, K.) 24–36 (University Museum, Univerity of Pennsylvania, 1989).

  • 82.

    Craig, O. E. et al. Distinguishing wild ruminant lipids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 26, 2359–2364 (2012).

    CAS  PubMed  ADS  Google Scholar 

  • 83.

    Pokharia, A. K. Floral Remains. in Excavation at Kanmer (2005–06 to 2008–09): Kanmer archaeological research project an Indo-Japanese collaboration (eds. Kharakwal, J. S., Rawat, Y. S. & Osada, T.) 795–812 (Indus project, research institute for humanity and Nature, 2012).

  • 84.

    Steele, V. J., Stern, B. & Stott, A. W. Olive oil or lard?: distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3478–3484 (2010).

    CAS  PubMed  ADS  Google Scholar 

  • 85.

    Spangenberg, J. E. & Ogrinc, N. Authentication of vegetable oils by bulk and molecular carbon isotope analyses with emphasis on olive oil and pumpkin seed oil. J. Agric. Food Chem. 49, 1534–1540 (2001).

    CAS  PubMed  Google Scholar 

  • 86.

    Hammann, S. & Cramp, L. J. E. Towards the detection of dietary cereal processing through absorbed lipid biomarkers in archaeological pottery. J. Archaeol. Sci. 93, 74–81 (2018).

    CAS  Google Scholar 

  • 87.

    Colonese, A. C. et al. New criteria for the molecular identification of cereal grains associated with archaeological artefacts. Sci. Rep. 7, 1–7 (2017).

    CAS  Google Scholar 

  • 88.

    Courel, B. et al. Organic residue analysis shows sub-regional patterns in the use of pottery by Northern European hunter-gatherers. R. Soc. Open Sci. 7, 2 (2020).

    Google Scholar 

  • 89.

    Hendy, J. et al. Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers. Nat. Commun. 9, 2 (2018).

    Google Scholar 

  • 90.

    Chase, B., Meiggs, D. & Ajithprasad, P. Pastoralism, climate change, and the transformation of the Indus Civilization in Gujarat: Faunal analyses and biogenic isotopes. J. Anthropol. Archaeol. 59, 101173 (2020).

    Google Scholar 

  • 91.

    Margabandhu, C. Technology of trasport vehicles in early India. In Radiocarbon and Indian Archaeology (eds Agarwal, D. P. & Ghosh, A.) 182–189 (Munshiram Manoharlal Publishers, New Delhi, 1973).

    Google Scholar 

  • 92.

    Fairservis, W. J. Cattle. Exped. Mag. 28, 43–50 (1986).

    Google Scholar 

  • 93.

    Chase, B. Family matters in Gujarat. In Walking with the Unicorn: Social Organization and Material Culture in Ancient South Asia (eds Frenez, D. et al.) 90–103 (Archaeopress Publishing LTD, Oxford, 2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Validating the physics behind the new MIT-designed fusion experiment

    Utilizing conductivity of seawater for bioelectric measurement of fish