When assessing the ecological status and the development of populations, one important factor to consider is the mortality rate and its underlying causes15. If the status of a population is deemed unsustainable due to high mortality rates, this information can then be used to develop and implement specific management measures, for example addressing the major causes of unnatural mortality16. With regard to the potential ecological relevance of the phenomenon of grey seal predation, it is therefore also important to have reliable estimates of harbour porpoise mortalities resulting from grey seal predation as one natural cause. To allow for a standardised assessment of lesions found in suspected grey seal predation cases, this study aims to summarise the knowledge that has been gathered to date.
The parameters described resemble the most commonly detected lesions in “definite”, “likely” and “fox” related cases of the 246 stranding records categorised as “suspicious” in terms of grey seal predation from the coasts of Schleswig–Holstein. With regard to grey seal predation, parameters 1–9 represent typical lesions, whereas the presence of parameters 10 and 11 is consistent with an interaction with a red fox.
Similar to lesions detected in seals, lesions in porpoises most often resemble puncture lesions in the skin and blubber (parameter 1). Yet, visually most striking is the commonly detected large tissue defect with straight, cut-like wound margins with often flaps of skin and blubber remaining only partly attached to the body (parameters 2, 5, 7). Missing blubber (parameter 4) is also recorded, either as reduced blubber thickness on the flaps of skin or as fully removed parts of blubber and skin. As has been described for seals14, the lesion most often originates in the cervical area (parameter 3). A difference that has been detected between the lesions in seals and porpoises is the rate of clear parallel running bite and / or scratch marks in the skin of the animals. Whereas this is rarely detected in seals14, most porpoises show respective marks (parameter 6). One probable explanation for this dissimilarity could be the different physical and morphological properties of the two types of skin. Seal skin is very dense and elastic; tearing and rupturing the skin requires a considerable amount of force17. Porpoise skin, however, is rather susceptible to applied mechanic force and puncturing or tearing it requires comparably little force18. These different mechanical properties might also be the reason why rake marks are found in the blubber (parameter 9) more often in seals (91% of likely cases14) than in porpoises (62% of likely cases). For seals, in the majority of cases, little to no skin is missing (skin missing in 49% of likely cases14), whereas in porpoises, a considerable number of cases (81% of likely cases) have been found where skin is missing (parameter 7). Grey seals have been described to mainly target the energy rich blubber tissue of their prey11,14. For the elastic and robust seal skin, this is done by scraping off the blubber with the teeth. As porpoise skin is fragile, we suggest that the blubber, including the skin, is more often fully removed by the grey seal and swallowed whole. If true, this may also influence the net energetic gain, which is acquired by the predator. Scraping of blubber tissue from seal skin will likely yield less tissue and cost more energy than tearing off whole pieces of blubber (including skin). Thus, it may result in a lower energetic gain. However, it is still unclear if the process of catching a porpoise in comparison to younger seals might also cost a considerably larger amount of energy, negatively influencing the net gain.
Similar to what has been described for seals, the avulsion of one or both scapulae (parameter 8) can be found and is also likely the result of the force applied when detaching the epidermis and blubber from the body of the prey14.
For porpoises, all nine suggested parameters were found in the definite case of grey seal predation. Parameters 1–5 showed a very high (100%) and parameter 6 a high rate (95%) of occurrence in likely cases. Parameters 7–9 occurred less frequently but were still found in > 60% of all likely predation cases. These high rates of occurrence throughout all parameters suggest that wound patterns found in porpoises are less variable than the patterns found in seals14. Whether this difference is a result of the different mechanical skin properties or if other factors are responsible, is beyond the scope of this study.
While for seals a skeletal trauma is used as an indicator of grey seal predation, for respective harbour porpoise cases, this is hardly ever (19% of likely cases) documented. In contrast, for porpoises, a skeletal trauma (parameter 10) is quite frequently detected in cases related to scavenging by foxes (46% of fox cases) where for example extremities can be manipulated19. As has been reported in seals14, the most often detected parameter in fox related cases is the ragged wound margin (parameter 11, 94% of the cases). Therefore, this can be seen as a good indicator of an interaction with a fox in porpoises. This is also supported by a definite case of fox scavenging, which was confirmed using genetic methods20. It needs to be stated though, that scavenging by birds can result in similar looking lesions, increasing the chance of misinterpretation. Scavenging by birds usually also leaves an irregular wound margin with extensive tissue loss. If parallel running lesions are present, the origin of the lesion can additionally be assessed by measuring the distances in between adjacent lesions and comparing them to published values of grey seal, fox and cetacean inter-teeth distances e.g.1. This is especially important when differentiating between for example rake marks by dolphins, which have been documented in porpoises21,22 and marks induced by grey seals. Here, it can be useful to assess the pattern of inter-teeth distances with those of dolphins expected to be consistent in length, whereas for grey seals, variable distances are expected as the result of the polydont dental morphology23. Despite a lack of available data, a differentiation between grey seal claw-induced marks and dolphin rake marks should be possible, as distances between claws of a subadult / adult grey seal male are expected to be considerably larger than for dolphin inter-teeth distances.
Single puncture lesions, in turn, are not considered as a very good indicator despite being present in the definite and all of the likely cases. Mainly due to the susceptibility of the porpoise skin, such lesions can have many different causes (e.g. feeding by birds).
Whether a loss of muscle tissue can be attributed to grey seal predation or is largely caused by scavengers like gulls as has been suggested for seals14, is still not entirely clear. In German as well as bordering waters, no clear pattern prevails. Carcasses with mainly intact as well as fully removed muscle tissue have been documented c.f.13. However, the reports by Stringell et al.4 suggest that not only the blubber tissue is targeted, but that there may also be some individual behavioural variation.
The findings and the resulting parameters described here are in line with wound patterns reported in earlier publications from other areas1,6,7,13. This shows that the documented wound patterns make a reliable set of parameters when assessing harbour porpoises carcasses potentially predated by a grey seal and should be used in future assessments.
As a complementary tool to the suggested parameters, corresponding to porpoises, we developed a decision tree with the aim of supporting a standardised and information-based decision-making process. Despite an accuracy in decision-making of 96% when using our data set, the example in Fig. 5 illustrates the limitations of such static tools when it comes to judging more complex cases. Furthermore, when comparing the suggestion given by the tree with the one made by the experts, in only 50% of unmatched cases, a rather precautionary judgement was made, bearing the risk of an overestimation of case numbers. Therefore, we recommend using the suggested tree only as an informational tool in supporting decision-making and final judgments should always be made by the responsible expert based on all available information.
In addition to cases for which the attack of a grey seal directly led to the death of the animal, interestingly, it seems not unusual that porpoises escape this predator. Several observations have been described in the literature5,6,13,24 and nine cases were documented in German waters (Figs. 1, 2). In order to be able to verify the origin of recorded teeth marks in porpoise skin, it is crucial to record marks in detail including their pattern, location and inter-teeth distances. Using the latter, for example, interactions with dolphins can potentially be excluded. Although there has been the odd case of a severely injured seal showing comparable lesions to what is associated with grey seal predation14, such high rates of escape cases as described for porpoises have not been reported.
Despite the co-occurrence of porpoises and grey seals in the Baltic, no case of grey seal predation on a porpoise can be confirmed by the presented results. It remains unclear whether grey seals in this area of the Baltic just don’t prey on porpoises or whether other factors like differences in behaviour (e.g. primary area of predation further offshore) are involved.
Some of the observed behaviour of grey seals when catching a porpoise can be directly linked to the detected lesions. For example, Stringell et al.4 as well as Bouveroux et al.7 described the grey seal acting as an ambush predator and attacking the porpoise from below using its jaws to catch and retain the prey. Lesions starting in the throat area (parameter 3) combined with parallel multifocal puncture lesions (parameter 6) resemble what would be expected as the result of such an attack.
Despite a lower rate of variability in detected wound patterns in porpoise carcasses, care should be applied when assessing lesions, as there is always the chance of other factors being involved. Therefore, if possible, a combination of data sources (necropsy results, genetic detection of predator DNA, indicators at the stranding site, eye witness reports, etc.) should be used in a systematic evaluation.
Future research should focus on continuing thorough investigations of stranded marine mammal carcasses in order to further update and refine the suggested set of parameters. Additionally, results of current as well as retrospective analysis of stranding data should be used to support an evaluation of the ecological relevance of this behaviour.
Source: Ecology - nature.com