in

Modelling the effects of CO2 on C3 and C4 grass competition during the mid-Pleistocene transition in South Africa

  • 1.

    Mucina, L. & Rutherford, M. C. The Vegetation of South Africa, Lesotho and Swaziland (South African National Biodiversity Institute, Pretoria, 2006).

    Google Scholar 

  • 2.

    van Zinderen Bakker, E. M. The evolution of late Quaternary paleoclimates of Southern Africa. Palaeoecol. Afr. 9, 160–202 (1976).

    Google Scholar 

  • 3.

    Cockcroft, M. J., Wilkinson, M. J. & Tyson, P. D. The application of a present-day climatic model to the late Quaternary in southern Africa. Clim. Change 10, 161–181 (1987).

    ADS  Google Scholar 

  • 4.

    Chase, B. M. & Meadows, M. E. Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci. Rev. 84(3), 103–138 (2007).

    ADS  Google Scholar 

  • 5.

    Bistinas, I., Harrison, S. P., Prentice, I. C. & Pereira, J. M. C. Causal relationships vs. emergent patterns in the global controls of fire frequency. Biogeosciences 11, 5087–5101 (2014).

    ADS  Google Scholar 

  • 6.

    Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F. & Wefer, G. The role of fire in Miocene to Pliocene C 4 grassland and ecosystem evolution. Nat. Geosci. 6(12), 1027–1030 (2013).

    ADS  CAS  Google Scholar 

  • 7.

    Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165(2), 525–538 (2005).

    CAS  PubMed  Google Scholar 

  • 8.

    Ripley, B. et al. Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type. Ecology 96(10), 2679–2691 (2015).

    PubMed  Google Scholar 

  • 9.

    Pinto, H., Sharwood, R. E., Tissue, D. T. & Ghannoum, O. Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2. J. Exp. Bot. 65(13), 3669–3681 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Roth-Nebelsick, A. & Konrad, W. Habitat responses of fossil plant species to palaeoclimate—possible interference with CO2?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 467, 277–286 (2017).

    Google Scholar 

  • 11.

    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112(3), 285–299 (1997).

    ADS  PubMed  Google Scholar 

  • 12.

    Edwards, E. J., Osborne, C. P., Strömberg, C. A., Smith, S. A. & C4 Grasses Consortium. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328(5978), 587–591 (2010).

    CAS  PubMed  Google Scholar 

  • 13.

    Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbondioxide concentration across the mid-Pleistocene transition. Science 324(5934), 1551–1554 (2009).

    ADS  PubMed  Google Scholar 

  • 14.

    Yan, Y. et al. Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature 574(7780), 663–666 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl. Acad. Sci. 116(43), 21478–21483 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Sealy, J., Naidoo, N., Hare, V. J., Brunton, S. & Faith, J. T. Climate and ecology of the palaeo-Agulhas Plain from stable carbon and oxygen isotopes in bovid tooth enamel from Nelson Bay Cave, South Africa. Quat. Sci. Rev. 235, 105974 (2019).

    Google Scholar 

  • 17.

    Horwitz, L. K. & Chazan, M. Past and present at Wonderwerk Cave (Northern Cape Province, South Africa). Afr. Archaeol. Rev. 32(4), 595–612 (2015).

    Google Scholar 

  • 18.

    Ecker, M. et al. The palaeoecological context of the Oldowan-Acheulean in southern Africa. Nat. Ecol. Evol. 2(7), 1080–1086 (2018).

    PubMed  Google Scholar 

  • 19.

    Matmon, A. et al. New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation. Quat. Res. 84(1), 118–132 (2015).

    Google Scholar 

  • 20.

    Vainer, S., Erel, Y. & Matmon, A. Provenance and depositional environments of Quaternary sediments in the southern Kalahari Basin. Chem. Geol. 476, 352–369 (2018).

    ADS  CAS  Google Scholar 

  • 21.

    Prentice, I. C. et al. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 25(3), 2–13 (2011).

    Google Scholar 

  • 22.

    Braconnot, P. et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum-Part 1: experiments and large-scale features. Clim. Past 3(2), 261–277 (2007).

    Google Scholar 

  • 23.

    Kelley, D. I. et al. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10(5), 3313–3340 (2013).

    ADS  Google Scholar 

  • 24.

    Chazan, M. et al. Archaeology, paleoenvironment and chronology of the early middle stone age component of Wonderwerk cave in the interior of southern Africa. J. Palaeolithic Archaeol. https://doi.org/10.1007/s41982-020-00051-8 (2020).

    Article  Google Scholar 

  • 25.

    Lee-Thorp, J. A. & Beaumont, P. B. Vegetation and seasonality shifts during the late Quaternary deduced from 13C/12C ratios of grazers at Equus Cave, South Africa. Quat. Res. 43, 426–432 (1995).

    Google Scholar 

  • 26.

    Vogel, J. C. The geographical distribution of Kranz species in southern Africa. South Afr. J. Sci. 75, 209–215 (1978).

    Google Scholar 

  • 27.

    Zhou, H., Helliker, B. R., Huber, M., Dicks, A. & Akçay, E. C4 photosynthesis and climate through the lens of optimality. Proc. Natl. Acad. Sci. 115(47), 12057–12062 (2018).

    CAS  PubMed  Google Scholar 

  • 28.

    Rubin, F., Palmer, A. R. & Tyson, C. Patterns of endemism within the Karoo National Park, South Africa. Bothalia 31(1), 117–133 (2001).

    Google Scholar 

  • 29.

    Walker, S. J., Lukich, V. & Chazan, M. Kathu townlands: a high density earlier stone age locality in the interior of South Africa. PLoS ONE 9(7), e103436 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Lee-Thorp, J. A., Sponheimer, M. & Luyt, J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. J. Hum. Evol. 53(5), 595–601 (2007).

    PubMed  Google Scholar 

  • 31.

    Codron, D., Brink, J. S., Rossouw, L. & Clauss, M. The evolution of ecological specialization in southern African ungulates: competition- or physical environmental turnover?. Oikos 117, 344–353 (2008).

    Google Scholar 

  • 32.

    Plummer, T. W. et al. The environmental context of Oldowan hominin activities at Kanjera South, Kenya. In Interdisciplinary approaches to the Oldowan (eds Hovers, E. & Braun, D. R.) 149–160 (Springer, Berlin, 2009).

    Google Scholar 

  • 33.

    Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl. Acad. Sci. 112(37), 11467–11472 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data. https://doi.org/10.1038/s41597-020-0453-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9(2), 161–185 (2003).

    ADS  Google Scholar 

  • 36.

    Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7(6), 1991–2011 (2010).

    ADS  CAS  Google Scholar 

  • 37.

    Haxeltine, A. & Prentice, I. C. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10(4), 693–709 (1996).

    ADS  CAS  Google Scholar 

  • 38.

    Haxeltine, A. & Prentice, I. C. A general model for the light-use efficiency of primary production. Funct. Ecol. 10, 551–561 (1996).

    Google Scholar 

  • 39.

    Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149, 78–90 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Farquhar, G. D. & Von Caemmerer, S. Modelling of photosynthetic response to environmental conditions. In Physiological Plant Ecology II: Water Relations and Carbon Assimilation (eds Nobel, P. S. et al.) 549–587 (Springer, Berlin, 1982).

    Google Scholar 

  • 41.

    Monteith, J. L. A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 18, 357–364 (1995).

    Google Scholar 

  • 42.

    Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels (Vol. 115). Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture (1972).

  • 43.

    Sato, H., Kelley, D. I., Mayor, S. J., Cowling S. A., Calvo, M. M. & Prentice, I. C. Fire and low CO2 opened dry corridors in South America during the Last Glacial Maximum. Under Review for Nature Geosciences: NGS-2019–07–01558B (2020).

  • 44.

    Prentice, I. C., Harrison, S. P. & Bartlein, P. J. Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol. 189(4), 988–998 (2011).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Spatial–temporal dynamics and driving factor analysis of urban ecological land in Zhuhai city, China

    Revamped MIT Climate Portal aims to inform and empower the public