in

Bark beetle outbreak enhances biodiversity and foraging habitat of native bees in alpine landscapes of the southern Rocky Mountains

  • 1.

    Veblen, T. T., Hadley, K. S., Reid, M. S. & Rebertus, A. J. The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology 72, 213–231 (1991).

    Article  Google Scholar 

  • 2.

    Edburg, S. L. et al. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front. Ecol. Environ. 10, 416–424 (2012).

    Article  Google Scholar 

  • 3.

    Raffa, K. F. et al. Cross-scale drivers of natural disturbance prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).

    Article  Google Scholar 

  • 4.

    McFarlane, B. L., Stumpf-Allen, R. G. C. & Watson, D. O. Public perceptions of natural disturbance in Canada’s national parks: The case of the mountain pine beetle (Dendroctonus ponderosae Hopkins). Biol. Conserv. 130, 340–348 (2006).

    Article  Google Scholar 

  • 5.

    Morris, J. L. et al. Bark beetles as agents of change in social-ecological systems. Front. Ecol. Environ. 16, S34–S43 (2018).

    Article  Google Scholar 

  • 6.

    Beudert, B. et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272–281 (2014).

    Article  Google Scholar 

  • 7.

    Colorado State Forest Service. Report on the Health of Colorado Forests (Colorado State Forest Service Media, Fort Collins, 2014).

    Google Scholar 

  • 8.

    Meddens, A. J. & Hicke, J. A. Spatial and temporal patterns of Landsat-based detection of tree mortality caused by a mountain pine beetle outbreak in Colorado, USA. For. Ecol. Manag. 322, 78–88 (2014).

    Article  Google Scholar 

  • 9.

    Rhoades, P. R., Davis, T. S., Tinkham, W. T. & Hoffman, C. M. Effects of seasonality, forest structure, and understory plant richness on bee community assemblage in a southern Rocky Mountain mixed conifer forest. Ann. Entomol. Soc. Am. 111, 278–284 (2018).

    Google Scholar 

  • 10.

    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article  Google Scholar 

  • 11.

    Harrington, T. B. & Edwards, M. B. Understory vegetation, resource availability, and litterfall responses to pine thinning and woody vegetation control in longleaf pine plantations. Can. J. For. Res. 29, 1055–1064 (1999).

    Article  Google Scholar 

  • 12.

    Takafumi, H. & Hiura, T. Effects of disturbance history and environmental factors on the diversity and productivity of understory vegetation in a cool-temperate forest in Japan. For. Ecol. Manag. 257, 843–857 (2009).

    Article  Google Scholar 

  • 13.

    Coleman, T. W. et al. Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. For. Ecol. Manag. 430, 321–326 (2018).

    Article  Google Scholar 

  • 14.

    Holway, J. G. & Ward, R. T. Phenology of alpine plants in northern Colorado. Ecology 46, 73–83 (1965).

    Article  Google Scholar 

  • 15.

    R Core Team. R: A Language and Environment for Statistical Programming. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org. (2020).

  • 16.

    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 346–367 (1974).

    MATH  Google Scholar 

  • 17.

    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).

    Article  Google Scholar 

  • 18.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article  Google Scholar 

  • 19.

    Hsieh, T.C., Ma, K.H. & Chao, A. iNext: Interpolation and extrapolation for species diversity. R package V 2.0.20 (2020).

  • 20.

    Galbraith, S. M., Cane, J. H., Moldenke, A. R. & Rivers, J. W. Wild bee diversity increases with local fire severity in a fire-prone landscape. Ecosphere 10, e02668. https://doi.org/10.1002/ecs2.2668 (2019).

    Article  Google Scholar 

  • 21.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 22.

    Oksanen, J., Guillaume-Blanchet, F., Friendly, M., Kindt, R., Legendre, P. & McGlinn, D., et al. Community ecology package ‘vegan’. R package V 2.5-6 (2019).

  • 23.

    McCabe, L. M., Cobb, N. S. & Butterfield, B. J. Environmental filtering of body size and darker coloration in pollinator communities indicate thermal restrictions on bees, but not flies, at high elevations. PeerJ 7, e7867. https://doi.org/10.7717/peerj.7867 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Oyen, K. J., Giri, S. & Dillon, M. E. Altitudinal variation in bumble bee (Bombus) critical thermal limits. J. Therm. Biol. 59, 52–57 (2016).

    Article  Google Scholar 

  • 25.

    Woodard, S. H. Bumble bee ecophysiology: Integrating the changing environment and the organism. Curr. Opin. Insect Sci. 22, 101–108 (2017).

    Article  Google Scholar 

  • 26.

    Carper, A. L. & Bowers, M. D. The Conservation Value of Woody Debris for Cavity-Nesting Bees on Boulder County Open Space (Boulder County Open Space Final Report, Boulder, 2017).

    Google Scholar 

  • 27.

    Klutsch, J. G. et al. Stand characteristics and downed woody debris accumulations associated with a mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in Colorado. For. Ecol. Manag. 258, 641–649 (2009).

    Article  Google Scholar 

  • 28.

    Fayt, P., Machmer, M. M. & Steeger, C. Regulation of spruce bark beetles by woodpeckers—A literature review. For. Ecol. Manag. 206, 1–14 (2005).

    Article  Google Scholar 

  • 29.

    Galbraith, S. M., Cane, J. H., Moldenke, A. R. & Rivers, J. W. Salvage logging reduces wild bee diversity, but not abundance, in severely burned mixed-conifer forest. For. Ecol. Manag. 453, 117622 (2019).

    Article  Google Scholar 

  • 30.

    Angers, V. A., Drapeau, P. & Bergeron, Y. Mineralization rates and factors influencing snag decay in four North American boreal tree species. Can. J. For. Res. 42, 157–166 (2011).

    Article  Google Scholar 

  • 31.

    Miller-Struttmann, N. E. & Galen, C. High-altitude multi-taskers: Bumble bee food plant use broadens along an altitudinal productivity gradient. Oecologia 176, 1033–1045 (2014).

    ADS  Article  Google Scholar 

  • 32.

    Burkle, L. A., Simanonok, M. P., Durney, J. S., Myers, J. A. & Belote, R. T. Wildfires influence abundance, diversity, and intraspecific and interspecific trait variation of native bees and flowering plants across burned and unburned landscapes. Front. Ecol. Evol. 7, 252. https://doi.org/10.3389/fevo.2019.00252 (2019).

    Article  Google Scholar 

  • 33.

    Owen, E. L., Bale, J. S. & Hayward, S. A. L. Can winter-active bumblebees survive the cold? Assessing the cold tolerance of Bombus terrestris audax and the effects of pollen feeding. PLoS ONE 8, e80061. https://doi.org/10.1371/journal.pone.0080061 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Rodriguez, A. & Kouki, J. Disturbance-mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems. Ecol. Appl. 27, 589–602 (2017).

    Article  Google Scholar 

  • 35.

    Cane, J. H. & Neff, J. L. Predicted fates of ground-nesting bees in soil heated by wildfire: Thermal tolerances of life stages and a survey of nesting depths. Biol. Conserv. 144, 2631–2636 (2011).

    Article  Google Scholar 

  • 36.

    Odanaka, K., Gibbs, J., Turley, N. E., Isaacs, R. & Brudvig, L. A. Canopy thinning, not agricultural history, determines early responses of wild bees to longleaf pine savanna restoration. Restor. Ecol. 28, 138–146 (2020).

    Article  Google Scholar 

  • 37.

    Rubene, D., Schroeder, M. & Ranius, T. Diversity patterns of wild bees and wasps in managed boreal forests: Effects of spatial structure, local habitat and surrounding landscape. Biol. Conserv. 184, 201–208 (2015).

    Article  Google Scholar 

  • 38.

    Mielke, J. L. Rate of deterioration of beetle-killed Engelmann spruce. J. For. 48, 882–888 (1950).

    Google Scholar 

  • 39.

    Raphael, M. G. & Morrison, M. L. Decay and dynamics of snags in the Sierra Nevada, California. For. Sci. 33, 774–783 (1987).

    Google Scholar 

  • 40.

    Rhoades, P. R. et al. Sampling technique affects detection of habitat factors influencing wild bee communities. J. Insect Conserv. 21, 703–714 (2017).

    Article  Google Scholar 

  • 41.

    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).

    Article  Google Scholar 

  • 42.

    Romme, W. H., Knight, D. H. & Yavitt, J. B. Mountain pine beetle outbreaks in the Rocky Mountains: Regulators of primary productivity?. Am. Nat. 127, 484–494 (1986).

    Article  Google Scholar 

  • 43.

    Nelson, K. N., Rocca, M. E., Diskin, M., Aoki, C. F. & Romme, W. H. Predictors of bark beetle activity and scale-dependent spatial heterogeneity change during the course of an outbreak in a subalpine forest. Landsc. Ecol. 29, 97–109 (2014).

    Article  Google Scholar 

  • 44.

    Lozier, J. D., Strange, J. P. & Koch, J. B. Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). Conserv. Genet. 14, 1099–1110 (2013).

    Article  Google Scholar 

  • 45.

    Boscolo, D., Tokumoto, P. M., Ferreira, P. A., Ribeiro, J. W. & dos Santos, J. S. Positive responses of flower visiting bees to landscape heterogeneity depend on functional connectivity levels. Perspect. Ecol. Evol. 15, 18–24 (2017).

    Google Scholar 

  • 46.

    Ründlof, M., Nilsson, H. & Smith, H. G. Interacting effects of farming practice and landscape context on bumble bees. Biol. Conserv. 141, 417–426 (2008).

    Article  Google Scholar 

  • 47.

    Andersson, G. K., Ekroos, J., Stjernman, M., Ründlof, M. & Smith, H. G. Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agric. Ecosyst. Environ. 184, 145–148 (2014).

    Article  Google Scholar 

  • 48.

    Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant–pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628. https://doi.org/10.1371/journal.pone.0123628 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Antarctic sea ice may not cap carbon emissions as much as previously thought

    A champion of renewable energy