in

The MARAS dataset, vegetation and soil characteristics of dryland rangelands across Patagonia

  • 1.

    MEA, M. E. A. Millennium ecosystem assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis, Published by World Resources Institute, Washington, DC (2005).

  • 2.

    Cherlet, M. et al. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management. (Publications Office of the European Union, 2018).

  • 3.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166 (2016).

    ADS  Article  Google Scholar 

  • 4.

    Gaitán, J. J. et al. Biotic and abiotic drivers of topsoil organic carbon concentration in drylands have similar effects at regional and global scales. Ecosystems 22, 1445–1456 (2019).

    Article  Google Scholar 

  • 5.

    Middleton, N., Stringer, L., Goudie, A. & Thomas, D. The forgotten billion: MDG achievement in the drylands. (UNCCD Secretariat, 2011).

  • 6.

    Reynolds, J. F. et al. Global Desertification: Building a. Science for Dryland Development. Science 316, 847–851 (2007).

    CAS  PubMed  Google Scholar 

  • 7.

    Bestelmeyer, B. T. et al. Land management in the American Southwest: A State-and-Transition approach to Ecosystem Complexity. Environmental Management 34, 38–51 (2004).

    Article  Google Scholar 

  • 8.

    Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annual review of ecology, evolution, and systematics 47, 215–237 (2016).

    Article  Google Scholar 

  • 9.

    Maestre, F., Salguero-Gómez, R. & Quero, J. It’s getting hotter in here: determining and projecting the impacts of global change on dryland ecosystems and on the people living in them. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 3062–3075 (2012).

    Article  Google Scholar 

  • 10.

    Tongway, D. & Hindley, N. L. Landscape Function Analysis: Procedures for monitoring and assessing landscapes. With special reference to Minesites and Rangelands. Vol. 1 (CSIRO, 2004).

  • 11.

    Sankey, T. T., Leonard, J. M. & Moore, M. M. Unmanned aerial vehicle− Based rangeland monitoring: examining a century of vegetation changes. Rangeland Ecology & Management 72, 858–863 (2019).

    Article  Google Scholar 

  • 12.

    Watson, I. W., Novelly, P. E. & Thomas, P. W. E. Monitoring changes in pastoral rangelands – the Western Australian Rangeland Monitoring System (WARMS). The Rangeland Journal 29, 191–205 (2007).

    Article  Google Scholar 

  • 13.

    White, A. et al. AUSPLOTS rangelands survey protocols manual. (University of Adelaide Press, 2012).

  • 14.

    Guerin, G. R. et al. Opportunities for integrated ecological analysis across inland Australia with standardised data from Ausplots Rangelands. PloS one 12 (2017).

  • 15.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Herrick, J. E., Van Zee, J. W., Havstad, K. M., Burkett, L. M. & Whitford, W. G. Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems. Vol. I (USDA-ARS Jornada Experimental Range, 2005).

  • 17.

    Oliva, G. et al. Monitoring drylands: The MARAS system. Journal of Arid Environments 161, 55–63 (2019).

    ADS  Article  Google Scholar 

  • 18.

    Oliva, G., Escobar, J., Siffredi, G., Salomone, J. & Buono, G. In Monitoring Patagonian Rangelands: The MARAS System. Monitoring Science and Technology Symposium. Denver CO. (eds C. Aguirre-Bravo, P. Pellicane, D. Burns, & S. Draggan) 188–193 (U.S. Dept. Agriculture, Forest Service, 2006).

  • 19.

    Oliva, G. et al. Manual para la instalación y lectura de monitores MARAS. Vol. 1 (PNUD, 2011).

  • 20.

    Bran, D. et al. Regiones Ecológicas Homogéneas de la Patagonia Argentina., (INTA, 2005).

  • 21.

    Oliva, G. et al. Installation Manual for MARAS Monitors: Environmental monitoring for arid and semiarid lands (PNUD, 2011).

  • 22.

    Hernández, F., Ríos, C. & Perotto-Baldivieso, H. L. Evolutionary history of herbivory in the Patagonian steppe: The role of climate, ancient megafauna, and guanaco. Quaternary Science Reviews 220, 279–290 (2019).

    ADS  Article  Google Scholar 

  • 23.

    Borrelli, P. In Ganadería ovina sustentable en la Patagonia Austral Vol. Cap 5 (eds P Borrelli & G Oliva) 131-162 (INTA, 2001).

  • 24.

    Cornforth, I. S. & Sinclair, A. G. Fertiliser recommendations for pastures and crops in New Zealand. (New Zealand Ministry of Agriculture, 1984).

  • 25.

    Elissalde, N., Escobar, J. & Nakamatsu, V. Inventario y evaluación de pastizales naturales de la zona arida y semiarida de la Patagonia. (INTA Trelew, 2002).

  • 26.

    McLaren, C. A. Dry Sheep Equivalents for comparing different classes of livestock. 4 (Department of Primary Industries, State of Victoria, Victoria, 1997).

  • 27.

    INIA. Revisión y análisis de las bases históricas y científicas del uso de la equivalencia ovino:bovino “Hacia una nueva equivalencia para ser utilizada en Uruguay”. (INIA, 2012).

  • 28.

    SRM, G. R. S. C. A Glossary of terms used in range management: a definition of terms commonly used in range management. (Society for Range Management, 1989).

  • 29.

    Oliva, G. et al. The MARAS dataset, vegetation and soil characteristics of dryland rangelands across Patagonia. figshare https://doi.org/10.6084/m9.figshare.c.4789113 (2020).

  • 30.

    Tongway, D. Rangeland soil condition assessment manual. (CSIRO. Division of Wildlife and Ecology, 1994).

  • 31.

    Daget, P. & Poissonet, J. Une methode d’analyse phytologique des prairies. Ann Argr. France 22, 5–41 (1971).

    Google Scholar 

  • 32.

    Halloy, S. & Barratt, B. I. P. Patterns of abundance and morphology as indicators of ecosystem status: A meta-analysis. Ecological Complexity 4, 128–147 (2007).

    Article  Google Scholar 

  • 33.

    Zuloaga, F., Morrone, O. & Belgrano, M. Catálogo de las Plantas Vasculares del Cono Sur. Versión base de datos en sitio web. (Instituto Darwinion, 2009).

  • 34.

    Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. & Imeson, A. C. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86, 288–297 (2005).

    Article  Google Scholar 

  • 35.

    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science 37, 29–38 (1934).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Schulte, E. & Hoskins, B. Recommended soil organic matter tests. Recommended Soil Testing Procedures for the North Eastern USA. Northeastern Regional Publication, 52-60 (1995).

  • 37.

    López, C., Rial, P., Elissalde, N., Llanos, E. & Behr, S. Grandes paisajes de la Patagonia Argentina. (INTA, 2005).

  • 38.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology 37, 4302–4315 (2017).

    ADS  Article  Google Scholar 

  • 39.

    Elzinga, C. L., Salzer, D. W. & Willoughby, J. W. Measuring & Monitoring Plant Populations. (BLM National Business Center, 1998).

  • 40.

    Magurran, A. E. Measuring Biological Diversity. (Blackwell Publishing, 2004).

  • 41.

    Oliva, G. et al. Estado de los Recursos Naturales de la Patagonia Sur 66 (INTA CRPATSU, Trelew, 2017).

  • 42.

    Gaitan, J. J. et al. Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands. Journal of Ecology 102, 1419–1428 (2014).

    Article  Google Scholar 

  • 43.

    Gaitán, J. J. et al. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecological Indicators 34, 181–191 (2013).

    Article  Google Scholar 

  • 44.

    Gaitán, J. J. et al. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands. Biology letters 10, 20140673 (2014).

    Article  Google Scholar 

  • 45.

    Gaitán, J. J. et al. Aridity and Overgrazing Have Convergent Effects on Ecosystem Structure and Functioning in Patagonian Rangelands. Land Degradation & Development 29, 210–218 (2017).

    Article  Google Scholar 

  • 46.

    Oliva, G., et al.) 1115-1117 (IRC 2016).

  • 47.

    Domínguez Díaz, E., Oliva, G. E., Báez Madariaga, J., Suárez Navarro, Á. & Pérez Castillo, C. Efectos del pastoreo holístico sobre la estructura y composición vegetal en praderas naturalizadas de uso ganadero, provincia de Última Esperanza, región de Magallanes, Chile. Anales del Instituto de la Patagonia 46, 17–28 (2018).

    Article  Google Scholar 

  • 48.

    Borrelli, P. et al. Estándar para la regeneración y la sustentabilidad de los pastizales (GRASS). The Nature Conservancy, OVIS 21 (2013).

  • 49.

    T. exchange. RWS, Responsible Wool Standard. 73 (London, 2016).

  • 50.

    Cabrera, A. Fitogeografia de la República Argentina. Boletín de la Sociedad Argentina de Botánica 14, 1–42 (1971).

    Google Scholar 

  • 51.

    León, R., Bran, D., Collantes, M., Paruelo, J. & Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecologia Austral 8, 125–144 (1998).

    Google Scholar 

  • 52.

    Luebert, F. & Pliscoff, P. Sinopsis bioclimática y vegetacional de Chile. (Santiago de Chile: Editorial Universitaria, 2006).


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form