Reynolds, M. P. (eds) Climate Change and Crop Production (CABI Publishing, 2010).
Morales-Castilla, I. et al. Diversity buffers winegrowing regions from climate change losses. Proc. Natl Acad. Sci. USA 117, 2864–2869 (2020).
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
Bellon, M. R., Hodson, D. & Hellin, J. Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc. Natl Acad. Sci. USA 108, 13432–13437 (2011).
Driedonks, N., Rieu, I. & Vriezen, W. H. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod. 29, 67–79 (2016).
Mercer, K. L. & Perales, H. Evolutionary response of landraces to climate change in centers of crop diversity. Evol. Appl. 3, 480–493 (2010).
FAOSTAT (FAO, 2020); http://www.fao.org/faostat/en/#home
Gibson, R., Mwanga, R. O. M., Namanda, S., Jeremiah, S. C. & Barker, I. Review of Sweetpotato Seed Systems in East and Southern Africa Working Paper 2009-1 (International Potato Center, 2009).
Laurie, R. N., Laurie, S. M., Du Plooy, C. P., Finnie, J. F. & Van Staden, J. Yield of drought-stressed sweet potato in relation to canopy cover, stem length and stomatal conductance. J. Agric. Sci. 7, 201–214 (2015).
Yang et al. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genomics 21, 164 (2020).
Warren, J. F. Typhoons and droughts: food shortages and famine in the Philippines since the seventeenth century. Int. Rev. Environ. Hist. 4, 27–44 (2018).
Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).
Roullier, C. et al. Disentangling the origins of cultivated sweet potato (Ipomoea batatas (L.) Lam.). PLoS ONE 8, e62707 (2013).
Kassali, R. Economics of sweet potato production. Int. J. Veg. Sci. 17, 313–321 (2011).
Omotobora, B. O., Adebola, P. O., Modise, D. M., Laurie, S. M. & Gerrano, A. S. Greenhouse and field evaluation of selected sweetpotato (Ipomoea batatas (L.) Lam.) accessions for drought tolerance in South Africa. Am. J. Plant Sci. 5, 3328–3339 (2014).
Woolfe, J. A. Sweetpotato: An Untapped Food Resource (Cambridge Univ. Press, 1992).
Jayne, T. S., Villareal, M., Pingali, P. & Hemrich, G. Interactions between the Agricultural Sector and the HIV/AIDS Pandemic: Implications for Agricultural Policy ESA Working Paper No. 04-46 (FAO, 2004).
Lebot, V. in Root and Tuber Crops (ed. Bradshaw, J. E.) 97–125 (Springer, 2010).
Zhao et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
Nangombe et al. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios. Nat. Clim. Change 8, 375–380 (2018).
Seneviratne, S. I. et al. in Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).
O’sullivan et al. Thermal limits of leaf metabolism across biomes. Glob. Change Biol. 23, 209–223 (2017).
Tack, J., Lingenfelser, J. & Jagadish, S. K. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proc. Natl Acad. Sci. USA 114, 9296–9301 (2017).
Araújo et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
Singh, K. D. & Mandal, R. C. Performance of coleus and sweet potato in relation to seasonal variations, time of planting. J. Root Crops 2, 17–22 (1976).
Gajanayake, B. R., Reddy, K., Shankle, M. W., Arancibia, R. A. & Villordon, A. Quantifying storage root initiation, growth, and developmental responses of sweetpotato to early season temperature. Agr. J. 106, 1795–1804 (2014).
Boeck, H. J. D., Velde, H. V. D., Groote, T. D. & Nijs, I. Ideas and perspectives: heat stress: more than hot air. Biogeosciences 13, 5821–5825 (2016).
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223 (2007).
Bita, C. & Gerats, T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4, 273 (2013).
Jones, H. G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (Cambridge Univ. Press, 2013).
Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H. & Zhang, Y. P. Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling. Glob. Ecol. Biogeogr. 26, 998–1007 (2017).
Reynolds, M. P. et al. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100, 84–95 (1998).
Park, S. et al. Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci. Rep. 6, 33563 (2016).
Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change 9, 758–763 (2019).
Herrera, J. M. et al. Lessons from 20 years of studies of wheat genotypes in multiple environments and under contrasting production systems. Front. Plant Sci. 10, 1745 (2020).
Khoury, C. K. et al. Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front. Plant Sci. 6, 251 (2015).
Alwang, J. et al. Pathways from research on improved staple crop germplasm to poverty reduction for smallholder farmers. Agric. Sys. 172, 16–27 (2019).
Pilling, D., Bélanger, J. & Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 1, 144–147 (2020).
Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).
Beck, H. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
Patterson, H. D. & Williams, E. R. A new class of resolvable incomplete block designs. Biometrika 63, 83–92 (1976).
Kumar, A. et al. Improving the efficiency of wheat breeding experiments using alpha lattice design over randomized complete block design. Cereal Res. Commun. 48, 95–101 (2020).
Khan, M. et al. Comparative efficiency of alpha lattice design and complete randomized block design in wheat, maize and potato field trials. J. Res. Dev. Manag. 11, 115–118 (2015).
Faye, E., Rebaudo, F., Yánez-Cajo, D., Cauvy-Fraunié, S. & Dangles, O. A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Methods Ecol. Evol. 7, 437–446 (2016).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 37, 4302–4315 (2017).
Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 034032 (2012).
Adoption of the Paris Agreement FCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).
Source: Ecology - nature.com