in

Soil-microorganism-mediated invasional meltdown in plants

  • 1.

    van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).

    Article  Google Scholar 

  • 2.

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    PubMed  Article  Google Scholar 

  • 4.

    Elton, C. S. The Ecology of Invasion by Animals and Plants (Univ. of Chicago Press, 1958).

  • 5.

    Kuebbing, S. E. & Nunez, M. A. Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nat. Plants 2, 16134 (2016).

    PubMed  Article  Google Scholar 

  • 6.

    Golivets, M. & Wallin, K. F. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. Ecol. Lett. 21, 745–759 (2018).

    PubMed  Article  Google Scholar 

  • 7.

    Zhang, Z. & van Kleunen, M. Common alien plants are more competitive than rare natives but not than common natives. Ecol. Lett. 22, 1378–1386 (2019).

    PubMed  Article  Google Scholar 

  • 8.

    White, E. M., Wilson, J. C. & Clarke, A. R. Biotic indirect effects: a neglected concept in invasion biology. Divers. Distrib. 12, 443–455 (2006).

    Article  Google Scholar 

  • 9.

    Sotomayor, D. A. & Lortie, C. J. Indirect interactions in terrestrial plant communities: emerging patterns and research gaps. Ecosphere 6, art103 (2015).

    Article  Google Scholar 

  • 10.

    Aschehoug, E. T. & Callaway, R. M. Diversity increases indirect interactions, attenuates the intensity of competition, and promotes coexistence. Am. Nat. 186, 452–459 (2015).

    PubMed  Article  Google Scholar 

  • 11.

    Feng, Y. & van Kleunen, M. Phylogenetic and functional mechanisms of direct and indirect interactions among alien and native plants. J. Ecol. 104, 1136–1148 (2016).

    Article  Google Scholar 

  • 12.

    Stotz, G. C. et al. Not a melting pot: plant species aggregate in their non‐native range. Glob. Ecol. Biogeogr. 29, 482–490 (2019).

    Article  Google Scholar 

  • 13.

    Wardle, D. A. & Peltzer, D. A. Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biol. Invasions 19, 3301–3316 (2017).

    Article  Google Scholar 

  • 14.

    Kulmatiski, A., Beard, K. H. & Stark, J. M. Soil history as a primary control on plant invasion in abandoned agricultural fields. J. Appl. Ecol. 43, 868–876 (2006).

    Article  Google Scholar 

  • 15.

    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).

    Article  Google Scholar 

  • 16.

    Simberloff, D. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol. Lett. 9, 912–919 (2006).

    PubMed  Article  Google Scholar 

  • 17.

    Braga, R. R., Gómez-Aparicio, L., Heger, T., Vitule, J. R. S. & Jeschke, J. M. Structuring evidence for invasional meltdown: broad support but with biases and gaps. Biol. Invasions 20, 923–936 (2018).

    Article  Google Scholar 

  • 18.

    Maynard, D. S., Miller, Z. R. & Allesina, S. Predicting coexistence in experimental ecological communities. Nat. Ecol. Evol. 4, 91–100 (2020).

    PubMed  Article  Google Scholar 

  • 19.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Godoy, O., Stouffer, D. B., Kraft, N. J. B. & Levine, J. M. Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. Ecology 98, 1193–1200 (2017).

    PubMed  Article  Google Scholar 

  • 21.

    Vandermeer, J. H. The competitive structure of communities: an experimental approach with protozoa. Ecology 50, 362–371 (1969).

    Article  Google Scholar 

  • 22.

    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).

    Article  Google Scholar 

  • 23.

    Case, T. J. & Bender, E. A. Testing for higher order interactions. Am. Nat. 118, 920–929 (1981).

    Article  Google Scholar 

  • 24.

    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Prince, E. K., Myers, T. L., Naar, J. & Kubanek, J. Competing phytoplankton undermines allelopathy of a bloom-forming dinoflagellate. Proc. R. Soc. B 275, 2733–2741 (2008).

    PubMed  Article  Google Scholar 

  • 26.

    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

  • 27.

    Dawson, W., Fischer, M. & van Kleunen, M. Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. Ecol. Lett. 15, 873–880 (2012).

    PubMed  Article  Google Scholar 

  • 28.

    Godoy, O., Valladares, F. & Castro-Díez, P. Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct. Ecol. 25, 1248–1259 (2011).

    Article  Google Scholar 

  • 29.

    Liu, Y. J. & van Kleunen, M. Nitrogen acquisition of Central European herbaceous plants that differ in their global naturalization success. Funct. Ecol. 33, 566–575 (2019).

    Article  Google Scholar 

  • 30.

    Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85, 561–573 (1997).

    Article  Google Scholar 

  • 32.

    Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).

    PubMed  Article  Google Scholar 

  • 33.

    Lekberg, Y. et al. Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).

    PubMed  Article  Google Scholar 

  • 34.

    Latz, E. et al. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J. Ecol. 100, 597–604 (2012).

    Article  Google Scholar 

  • 35.

    Kardol, P., Cornips, N. J., van Kempen, M. M. L., Bakx-Schotman, J. M. T. & van der Putten, W. H. Microbe-mediated plant–soil feedback causes historical contingency effects in plant community assembly. Ecol. Monogr. 77, 147–162 (2007).

    Article  Google Scholar 

  • 36.

    Dawson, W., Schrama, M. & Austin, A. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).

    Article  Google Scholar 

  • 37.

    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).

  • 38.

    Ke, P. J. & Wan, J. Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecol. Monogr. 90, e01391 (2020).

    Article  Google Scholar 

  • 39.

    Kuebbing, S. E., Classen, A. T., Call, J. J., Henning, J. A. & Simberloff, D. Plant–soil interactions promote co-occurrence of three nonnative woody shrubs. Ecology 96, 2289–2299 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Callaway, R. M. et al. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89, 1043–1055 (2008).

    PubMed  Article  Google Scholar 

  • 41.

    Darwin, C. On the Origin of Species (J. Murray, 1859).

  • 42.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).

    Article  Google Scholar 

  • 43.

    Mangla, S. & Callaway, R. M. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol. 96, 58–67 (2008).

    Google Scholar 

  • 44.

    Saul, W. C. & Jeschke, J. M. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18, 236–245 (2015).

    PubMed  Article  Google Scholar 

  • 45.

    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 46.

    Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).

    Article  Google Scholar 

  • 47.

    Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS 11, plz051 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).

    PubMed  Article  Google Scholar 

  • 50.

    Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).

    PubMed  Article  Google Scholar 

  • 52.

    Reinhart, K. O., Packer, A., Van der Putten, W. H. & Clay, K. Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol. Lett. 6, 1046–1050 (2003).

    Article  Google Scholar 

  • 53.

    Liu, H. & Stiling, P. Testing the enemy release hypothesis: a review and meta-analysis. Biol. Invasions 8, 1535–1545 (2006).

    Article  Google Scholar 

  • 54.

    Zhang, Z. et al. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology 99, 866–875 (2018).

    PubMed  Article  Google Scholar 

  • 55.

    Chun, Y. J., van Kleunen, M. & Dawson, W. The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol. Lett. 13, 937–946 (2010).

    PubMed  Google Scholar 

  • 56.

    Dickie, I. A. et al. The emerging science of linked plant–fungal invasions. New Phytol. 215, 1314–1332 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Shipunov, A., Newcombe, G., Raghavendra, A. K. H. & Anderson, C. L. Hidden diversity of endophytic fungi in an invasive plant. Am. J. Bot. 95, 1096–1108 (2008).

    PubMed  Article  Google Scholar 

  • 58.

    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Busby, P. E., Peay, K. G. & Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 209, 1681–1692 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Großkopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Feng, Y., Fouqueray, T. D., van Kleunen, M. & Cornelissen, H. Linking Darwin’s naturalisation hypothesis and Elton’s diversity–invasibility hypothesis in experimental grassland communities. J. Ecol. 107, 794–805 (2019).

    Article  Google Scholar 

  • 63.

    Li, S. P. et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).

    PubMed  Article  Google Scholar 

  • 64.

    van Kleunen, M., Dawson, W., Bossdorf, O. & Fischer, M. The more the merrier: multi-species experiments in ecology. Basic Appl. Ecol. 15, 1–9 (2014).

    Article  Google Scholar 

  • 65.

    FloraWeb (Bundesamt für Naturschutz, 2003); http://www.floraweb.de/

  • 66.

    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

    Article  Google Scholar 

  • 67.

    Brinkman, E. P., Van der Putten, W. H., Bakker, E.-J. & Verhoeven, K. J. F. Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 98, 1063–1073 (2010).

    Article  Google Scholar 

  • 68.

    Rinella, M. J. & Reinhart, K. O. Toward more robust plant–soil feedback research. Ecology 99, 550–556 (2018).

    PubMed  Article  Google Scholar 

  • 69.

    Zhang, Z., Liu, Y., Brunel, C. & van Kleunen, M. Evidence for Elton’s diversity–invasibility hypothesis from belowground. Ecology https://doi.org/10.1002/ecy.3187 (accepted).

  • 70.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Orgiazzi, A. et al. Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7, e34847 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–13 (2011).

    Article  Google Scholar 

  • 73.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 75.

    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  • 76.

    R: A language and environment for statistical computing v.3.6.1 (R Foundation for Statistical Computing, 2019); http://www.R-project.org/

  • 77.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effect s models. R package version 3.1-140 (2019).

  • 78.

    Gibson, D., Connolly, J., Hartnett, D. & Weidenhamer, J. Designs for greenhouse studies of interactions between plants. J. Ecol. 87, 1–16 (1999).

    Article  Google Scholar 

  • 79.

    Aschehoug, E. T., Brooker, R., Atwater, D. Z., Maron, J. L. & Callaway, R. M. The mechanisms and consequences of interspecific competition among plants. Annu. Rev. Ecol. Syst. 47, 263–281 (2016).

    Article  Google Scholar 

  • 80.

    Hart, S. P., Burgin, J. R. & Marshall, D. J. Revisiting competition in a classic model system using formal links between theory and data. Ecology 93, 2015–2022 (2012).

    PubMed  Article  Google Scholar 

  • 81.

    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  • 82.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article  Google Scholar 

  • 83.

    Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol. 222, 91–96 (2019).

    PubMed  Article  Google Scholar 

  • 84.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6 (2019).

  • 85.

    Wei, T. & Simko, V. corrplot: Visualization of a correlation matrix. R package version 0.84 (2017).


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form