in

Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans

  • 1.

    Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. Nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Chaturvedi, V. & Chaturvedi, S. Editorial: What is in a Name? A proposal to use geomycosis instead of white nose syndrome (WNS) to describe bat infection caused by geomyces destructans. Mycopathologia 171, 231–233. https://doi.org/10.1007/s11046-010-9385-3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Frick, W. F., Puechmaille, S. J. & Willis, C. K. Bats in the Anthropocene: Conservation of Bats in a Changing World 245–262 (Springer, Berlin, 2016).

    Google Scholar 

  • 5.

    Bandouchova, H. et al. Alterations in the health of hibernating bats under pathogen pressure. Sci. Rep. 8, 6067 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 6.

    Zukal, J. et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 6, 19829 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Drees, K. P. et al. Phylogenetics of a fungal invasion: Origins and widespread dispersal of white-nose syndrome. mBio 8, 11941–11917 (2017).

    Article  Google Scholar 

  • 8.

    Leopardi, S., Blake, D. & Puechmaille, S. J. White-nose syndrome fungus introduced from Europe to North America. Curr. Biol. 25, 217–219 (2015).

    Article  CAS  Google Scholar 

  • 9.

    Palmer, J. M. et al. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3 Genes Genomes Genet. 4, 1755–1763 (2014).

    Google Scholar 

  • 10.

    Trivedi, J. N. Population genomics and mutational history of the invasive, epidemic clone of Pseudogymnoascus destructans, causal agent of White-nose Syndrome in bats (University of Toronto, Toronto, 2017).

    Google Scholar 

  • 11.

    Rajkumar, S. S. et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis 17, 1273–1276 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Lorch, J. M. et al. First detection of bat white-nose syndrome in western North America. mSphere 1, e00148-e1116 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Forsythe, A., Giglio, V., Asa, J. & Xu, J. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose syndrome pathogen, Pseudogymnoascus destructans, North America. Appl. Environ. Microbiol. 84, e00863-e1818. https://doi.org/10.1128/aem.00863-18 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Khankhet, J. et al. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS ONE 9, e104684 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Cryan, P. M., Meteyer, C. U., Boyles, J. G. & Blehert, D. S. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8, 1–8. https://doi.org/10.1186/1741-7007-8-135 (2010).

    Article  Google Scholar 

  • 16.

    Meteyer, C. U. et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 21, 411–414. https://doi.org/10.1177/104063870902100401 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Pikula, J. et al. White-nose syndrome pathology grading in nearctic and palearctic bats. PLoS ONE 12, e0180435 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. 109, 6999–7003 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Flieger, M. et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep. 6, 33200 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Hayman, D. T. S., Pulliam, J. R. C., Marshall, J. C., Cryan, P. M. & Webb, C. T. Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Sci. Adv. 2, e1500831. https://doi.org/10.1126/sciadv.1500831 (2016).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Vol. 9 (2013).

  • 22.

    Wibbelt, G. in Emerging and Epizootic Fungal Infections in Animals 289–307 (Springer, Berlin, 2018).

    Google Scholar 

  • 23.

    Achterman, R. R. & White, T. C. Dermatophyte virulence factors: Identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J. Microbiol. 20, 12 (2011).

    Google Scholar 

  • 24.

    Chinnapun, D. Virulence factors involved in pathogenicity of dermatophytes. Walailak J. Sci. Technol. (WJST) 12, 573–580 (2015).

    Google Scholar 

  • 25.

    Pannkuk, E. L., Risch, T. S. & Savary, B. J. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans. PLoS ONE 10, e0120508. https://doi.org/10.1371/journal.pone.0120508 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Raudabaugh, D. B. & Miller, A. N. Nutritional capability of and substrate suitability for Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE 8, e78300. https://doi.org/10.1371/journal.pone.0078300 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Mascuch, S. J. et al. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS ONE 10, e0119668. https://doi.org/10.1371/journal.pone.0119668 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    van Burik, J. A. H. & Magee, P. T. Aspects of fungal pathogenesis in humans. Annu. Rev. Microbiol. 55, 743–772 (2001).

    PubMed  Article  Google Scholar 

  • 29.

    Donaldson, M. E. et al. Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: Implications in identifying virulence factors. Mycologia 110, 300–315 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Field, K. A. et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 11, e1005168. https://doi.org/10.1371/journal.ppat.1005168 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Reeder, S. M. et al. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections. Virulence 8, 1695–1707 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Lorch, J. M. et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105, 237–252. https://doi.org/10.3852/12-207 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Meyer, A. D., Stevens, D. F. & Blackwood, J. C. Predicting bat colony survival under controls targeting multiple transmission routes of white-nose syndrome. J. Theor. Biol. 409, 60–69 (2016).

    MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 35.

    Gargas, A., Trest, M., Christensen, M., Volk, T. J. & Blehert, D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).

    Article  Google Scholar 

  • 36.

    Chaturvedi, V. et al. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with white nose syndrome (WNS). PLoS ONE 5, e10783 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Verant, M. L., Boyles, J. G., Waldrep, W. Jr., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Palmer, J. M., Drees, K. P., Foster, J. T. & Lindner, D. L. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat. Commun. 9, 35. https://doi.org/10.1038/s41467-017-02441-z (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Campbell, L. J., Walsh, D. P., Blehert, D. S. & Lorch, J. M. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildlife Dis. 56, 278–287 (2020).

    Article  Google Scholar 

  • 40.

    Reynolds, H. T. & Barton, H. A. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity. PLoS ONE 9, e86437. https://doi.org/10.1371/journal.pone.0086437 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Smyth, C., Schlesinger, S., Overton, B. & Butchkoski, C. The alternative host hypothesis and potential virulence genes in Geomyces destructans. Bat Res. News 54, 17–24 (2013).

    Google Scholar 

  • 42.

    Chaturvedi, V., DeFiglio, H. & Chaturvedi, S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Research 7, 2 (2018).

    Article  CAS  Google Scholar 

  • 43.

    Vanderwolf, K. J., Malloch, D., McAlpine, D. F. & Forbes, G. J. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 42, 9 (2013).

    Article  Google Scholar 

  • 44.

    Wilson, M. B., Held, B. W., Freiborg, A. H., Blanchette, R. A. & Salomon, C. E. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS ONE 12, e0178968. https://doi.org/10.1371/journal.pone.0178968 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Gabriel, K. T., Neville, J. J., Pierce, G. E. & Cornelison, C. T. Lipolytic activity and the utilization of fatty acids associated with bat sebum by Pseudogymnoascus destructans. Mycopathologia 184, 625–636. https://doi.org/10.1007/s11046-019-00381-4 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Park, M., Do, E. & Jung, W. H. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41, 67–72. https://doi.org/10.5941/myco.2013.41.2.67 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Carlini, C. R. & Ligabue-Braun, R. Ureases as multifunctional toxic proteins: A review. Toxicon 110, 90–109 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Cox, G. M., Mukherjee, J., Cole, G. T., Casadevall, A. & Perfect, J. R. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 68, 443–448 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Vylkova, S. & Lorenz, M. C. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 10, e1003995. https://doi.org/10.1371/journal.ppat.1003995 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Vylkova, S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 13, e1006149. https://doi.org/10.1371/journal.ppat.1006149 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Shawcross, D. L. et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 48, 1202–1212 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    O’Donoghue, A. J. et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PNAS 112, 7478–7483. https://doi.org/10.1073/pnas.1507082112 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 53.

    Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of humidity on development of Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 24, 54–64 (2017).

    Article  Google Scholar 

  • 54.

    Kolařík, M. et al. Geosmithia associated with bark beetles and woodborers in the western USA: Taxonomic diversity and vector specificity. Mycologia 109, 185–199. https://doi.org/10.1080/00275514.2017.1303861 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Garland, J. L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28, 213–221. https://doi.org/10.1016/0038-0717(95)00112-3 (1996).

    CAS  Article  Google Scholar 

  • 56.

    Dobranic, J. K. & Zak, J. C. A microtiter plate procedure for evaluating fungal functional diversity. Mycologia 91, 756–765 (1999).

    Article  Google Scholar 

  • 57.

    Harch, B. D., Correll, R. L., Meech, W., Kirkby, C. A. & Pankhurst, C. E. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J. Microbiol. Methods 30, 91–101. https://doi.org/10.1016/s0167-7012(97)00048-1 (1997).

    CAS  Article  Google Scholar 

  • 58.

    Sobek, E. A. & Zak, J. C. The Soil FungiLog procedure: Method and analytical approaches toward understanding fungal functional diversity. Mycologia 95, 590–602 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Kouker, G. & Jaeger, K.-E. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53, 211–213 (1987).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Lupan, D. M. & Nziramasanga, P. Collagenolytic activity of Coccidioides immitis. Infect. Immun. 51, 360–361 (1986).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Saleh-Rastin, N., Petersen, M., Coleman, S. & Hubbell, D. The rhizosphere and plant growth 188–188 (Springer, Berlin, 1991).

    Google Scholar 

  • 62.

    NziramasangaM, P. & Lupan, D. Elastase activity of Coccidioides immitis. J. Med. Microbiol. 19, 109–114 (1985).

    Article  Google Scholar 

  • 63.

    Dietz, M. & Kalko, E. K. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B. 176, 223–231 (2006).

    PubMed  Article  Google Scholar 

  • 64.

    Sephton-Clark, P. C. S. & Voelz, K. In Advances in applied microbiology (eds Sima, S. & Geoffrey, M. G.) 117–157 (Academic Press, New York, 2018).

    Google Scholar 

  • 65.

    Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 66.

    Martínková, N. et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE 5, e13853 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 67.

    Větrovský, T., Kolařík, M., Žifčáková, L., Zelenka, T. & Baldrian, P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 16, 388–401 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 68.

    Crous, P. et al. Fungal planet description sheets: 558–624. Persoonia 38, 240 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Hubka, V. et al. A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Syst. Evol. 302, 1267–1299 (2016).

    CAS  Article  Google Scholar 

  • 70.

    Kubátová, A., Hujslová, M., Frisvad, J. C., Chudíčková, M. & Kolařík, M. Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils. Mycol. Progr. 18, 215–228 (2019).

    Article  Google Scholar 

  • 71.

    Gabrielová, A. et al. The oomycete Pythium oligandrum can suppress and kill the causative agents of dermatophytoses. Mycopathologia 183, 751–764 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form