in

Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora

  • 1.

    Aleklett K, Hart M, Shade A. The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany. 2014;92:253–66.

    Article  Google Scholar 

  • 2.

    Shade A, McManus PS, Handelsman J. Unexpected diversity during community succession in the apple flower microbiome. MBio. 2013;4:e00602–12.

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Ambika Manirajan B, Ratering S, Rusch V, Schwiertz A, Geissler‐Plaum R, Cardinale M, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species‐specificity. Environ Microbiol. 2016;18:5161–74.

    Article  Google Scholar 

  • 4.

    Tucker CM, Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc R Soc B: Biol Sci. 2014;281:20132637.

    Article  Google Scholar 

  • 5.

    Pusey PL, Rudell DR, Curry EA, Mattheis JP. Characterization of stigma exudates in aqueous extracts from apple and pear flowers. HortScience. 2008;43:1471–8.

    Article  Google Scholar 

  • 6.

    Stockwell V, McLaughlin R, Henkels M, Loper J, Sugar D, Roberts R. Epiphytic colonization of pear stigmas and hypanthia by bacteria during primary bloom. Phytopathology. 1999;89:1162–8.

    CAS  Article  Google Scholar 

  • 7.

    Steven B, Huntley RB, Zeng Q. The influence of flower anatomy and apple cultivar on the apple flower phytobiome. Phytobiomes. 2018;2:171–9.

    Article  Google Scholar 

  • 8.

    Norelli JL, Jones AL, Aldwinckle HS. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 2003;87:756–65.

    Article  Google Scholar 

  • 9.

    Thomson S, Wagner A, Gouk S, editors. Rapid epiphytic colonization of apple flowers and the role of insects and rain. VIII International Workshop on Fire Blight. vol 489. ISHS Acta Horticulturae; Kusadasi, Turkey. 1998.

  • 10.

    Pusey PL, Stockwell VO, Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology. 2009;99:571–81.

    Article  Google Scholar 

  • 11.

    Sinclair L, Osman OA, Bertilsson S, Eiler A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE. 2015;10:e0116955.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Pirc M, Ravnikar M, Tomlinson J, Dreo T. Improved fireblight diagnostics using quantitative real‐time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathol. 2009;58:872–81.

    CAS  Article  Google Scholar 

  • 13.

    Cui Z, Yuan X, Yang C-H, Huntley RB, Sun W, Wang J, et al. Development of a method to monitor gene expression in single bacterial cells during the interaction with plants and use to study the expression of the type III secretion system in single cells of Dickeya dadantii in potato. Front Microbiol. 2018;9:1429.

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Schloss PD, W S, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Rognes T, F T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Westcott SL, S P. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. MSphere. 2017;2:e00073–17.

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Quast C, P E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Dixon P. VEGAN, a package of R functions for community ecology. J Vegetation Sci. 2003;14:927–30.

    Article  Google Scholar 

  • 20.

    Wickham H. ggplot2: elegant graphics for data analysis. Springer; New York. 2016.

  • 21.

    Palacio-Bielsa A, R M, Llop P, López MM. Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees. 2012;26:13–29.

    Article  Google Scholar 

  • 22.

    Kube M, M A, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K. The genome of Erwinia tasmaniensis strain Et1/99, a non‐pathogenic bacterium in the genus Erwinia. Environ Microbiol. 2008;10:2211–22.

    CAS  Article  Google Scholar 

  • 23.

    Geider K, A G, Du Z, Jakovljevic V, Jock S, Völksch B. Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evolut Microbiol. 2006;56:2937–43.

    CAS  Article  Google Scholar 

  • 24.

    Thomson S. The role of the stigma in fire blight infections. Phytopathology. 1986;76:476–82.

    Article  Google Scholar 

  • 25.

    Johnson KB, S V. Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol. 1998;36:227–48.

    CAS  Article  Google Scholar 

  • 26.

    Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Albrecht M, Padrón B, Bartomeus I, Traveset A. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc R Soc B: Biol Sci. 2014;281:20140773.

    Article  Google Scholar 

  • 28.

    Edlund AF, Swanson R, Preuss D. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell. 2004;16:S84–S97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Fridman S, Izhaki I, Gerchman Y, Halpern M. Bacterial communities in floral nectar. Environ Microbiol Rep. 2012;4:97–104.

    Article  Google Scholar 

  • 30.

    Yuan J, Chaparro JM, Manter DK, Zhang R, Vivanco JM, Shen Q. Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem. 2015;89:206–9.

    CAS  Article  Google Scholar 

  • 31.

    Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil. 2002;246:167–74.

    CAS  Article  Google Scholar 

  • 32.

    Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol. 2005;20:634–41.

    Article  Google Scholar 

  • 33.

    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Pusey P, Stockwell V, Reardon C, Smits T, Duffy B. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology. 2011;101:1234–41.

    CAS  Article  Google Scholar 

  • 35.

    Herrera CM. Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology. 1995;76:1516–24.

    Article  Google Scholar 

  • 36.

    Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Hamdan-Partida A, González-García S, de la Rosa García E, Bustos-Martínez J. Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat. Int J Med Microbiol. 2018;308:469–75.

    Article  Google Scholar 

  • 38.

    Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 2001;9:605–10.

    CAS  Article  Google Scholar 

  • 39.

    Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001;344:11–6.

    Article  Google Scholar 

  • 40.

    Paetzold B, Willis JR, de Lima JP, Knödlseder N, Brüggemann H, Quist SR, et al. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019;7:95.

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Trosvik P, Stenseth NC, Rudi K. Convergent temporal dynamics of the human infant gut microbiota. ISME J. 2010;4:151.

    CAS  Article  Google Scholar 

  • 42.

    Shenhav L, Furman O, Briscoe L, Thompson M, Silverman JD, Mizrahi I, et al. Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Comput Biol. 2019;15:e1006960.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Giatsis C, Sipkema D, Smidt H, Verreth J, Verdegem M. The colonization dynamics of the gut microbiota in tilapia larvae. PLoS ONE. 2014;9:e103641.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Booijink CC, El‐Aidy S, Rajilić‐Stojanović M, Heilig HG, Troost FJ, Smidt H, et al. High temporal and inter‐individual variation detected in the human ileal microbiota. Environ Microbiol. 2010;12:3213–27.

    CAS  Article  Google Scholar 

  • 45.

    Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. 2014;5:4500.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Colman DR, Toolson EC, Takacs‐Vesbach C. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol. 2012;21:5124–37.

    CAS  Article  Google Scholar 

  • 47.

    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027.

    Article  Google Scholar 

  • 48.

    Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007;318:812–4.

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Comparing the benefits of scooter-sharing vs. bike-sharing

    Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests