in

Century-long cod otolith biochronology reveals individual growth plasticity in response to temperature

  • 1.

    IPCC. Special Report: The Ocean and Cryosphere in a Changing Climate (2019). https://www.ipcc.ch/report/srocc/

  • 2.

    Huss, M., Lindmark, M., Jacobson, P., van Dorst, R. M. & Gårdmark, A. Experimental evidence of gradual size-dependent shifts in body size and growth of fish in response to warming. Glob. Chang. Biol. 25, 2285–2295 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Smoliński, S. & Mirny, Z. Otolith biochronology as an indicator of marine fish responses to hydroclimatic conditions and ecosystem regime shifts. Ecol. Indic. 79, 286–294 (2017).

    Article  Google Scholar 

  • 6.

    Reed, T. E. et al. Responding to environmental change: Plastic responses vary little in a synchronous breeder. Proc. R. Soc. B 273, 2713–2719 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Ricker, W. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191, 382 (1975).

    Google Scholar 

  • 8.

    Nussey, D. H., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. & Kruuk, L. E. B. Constraints on plastic responses to climate variation in red deer. Biol. Lett. 1, 457–460 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Morrongiello, J. R. & Thresher, R. A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example. Ecol. Monogr. 85, 93–115 (2015).

    Article  Google Scholar 

  • 10.

    Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Paoli, A., Weladji, R. B., Holand, Ø & Kumpula, J. Early-life conditions determine the between-individual heterogeneity in plasticity of calving date in reindeer. J. Anim. Ecol. 89, 370–383 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Campana, S. E. & Thorrold, S. R. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations?. Can. J. Fish. Aquat. Sci. 58, 30–38 (2001).

    Article  Google Scholar 

  • 13.

    Campana, S. E. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish Biol. 59, 197–242 (2001).

    Article  Google Scholar 

  • 14.

    Black, B. A., Boehlert, G. W. & Yoklavich, M. M. Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Can. J. Fish. Aquat. Sci. 62, 2277–2284 (2005).

    Article  Google Scholar 

  • 15.

    Morrongiello, J. R., Thresher, R. E. & Smith, D. C. Aquatic biochronologies and climate change. Nat. Clim. Chang. 2, 849–857 (2012).

    ADS  Article  Google Scholar 

  • 16.

    Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Grønkjær, P. Otoliths as individual indicators: A reappraisal of the link between fish physiology and otolith characteristics. Mar. Freshw. Res. 67, 881–888 (2016).

    Article  Google Scholar 

  • 18.

    Bonamour, S., Chevin, L. M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: The importance of cue variation. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180178 (2019).

    Article  Google Scholar 

  • 19.

    Guindre-Parker, S. et al. Individual variation in phenotypic plasticity of the stress axis. Biol. Lett. 15, 1–7 (2019).

    Article  Google Scholar 

  • 20.

    van de Pol, M. Quantifying individual variation in reaction norms: How study design affects the accuracy, precision and power of random regression models. Methods Ecol. Evol. 3, 268–280 (2012).

    Article  Google Scholar 

  • 21.

    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Article  Google Scholar 

  • 22.

    Morrongiello, J. R., Sweetman, P. C. & Thresher, R. E. Fishing constrains phenotypic responses of marine fish to climate variability. J. Anim. Ecol. 88, 1645–1656 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Hilborn, R., Quinn, T. P., Schindler, D. E. & Rogers, D. E. Biocomplexity and fisheries sustainability. Proc. Natl. Acad. Sci. 100, 6564–6568 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Brommer, J. E., Merila, J., Sheldon, B. C. & Gustafsson, L. Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution 59, 1362–1371 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Link, J. S., Bogstad, B., Sparholt, H. & Lilly, G. R. Trophic role of Atlantic cod in the ecosystem. Fish Fish. 10, 58–87 (2009).

    Article  Google Scholar 

  • 28.

    Drinkwater, K. F. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J. Mar. Sci. 62, 1327–1337 (2005).

    Article  Google Scholar 

  • 29.

    Richardson, A. J. et al. Climate change and marine life. Biol. Lett. 8, 907–909 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Lorenzen, K. & Enberg, K. Density-dependent growth as a key mechanism in the regulation of fish populations: Evidence from among-population comparisons. Proc. R. Soc. B Biol. Sci. 269, 49–54 (2002).

    Article  Google Scholar 

  • 31.

    Frater, P. N., Hrafnkelsson, B., Elvarsson, B. T. & Stefansson, G. Drivers of growth for Atlantic cod (Gadus morhua L.) in Icelandic waters—A Bayesian approach to determine spatiotemporal variation and its causes. J. Fish Biol. 95, 401–410 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Eikeset, A. M. et al. Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes. Proc. Natl. Acad. Sci. USA 113, 15030–15035 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Brander, K. M. The effect of temperature on growth of Atlantic cod. ICES J. Mar. Sci. 52, 1–10 (1995).

    Article  Google Scholar 

  • 34.

    Sinclair, A. F., Swain, D. P. & Hanson, J. M. Disentangling the effects of size-selective mortality, density, and temperature on length-at-age. Can. J. Fish. Aquat. Sci. 59, 372–382 (2002).

    Article  Google Scholar 

  • 35.

    Pálsson, ÓK. A review of the trophic interactions of cod stocks in the North Atlantic. ICES Mar. Sci. Symp. 198, 553–575 (1994).

    Google Scholar 

  • 36.

    Pálsson, ÓK. & Bjrnsson, H. Long-term changes in trophic patterns of Iceland cod and linkages to main prey stock sizes. ICES J. Mar. Sci. 68, 1488–1499 (2011).

    Article  Google Scholar 

  • 37.

    Denechaud, C., Smoliński, S., Geffen, A. J., Godiksen, J. A. & Campana, S. E. A century of fish growth in relation to climate change, population dynamics and exploitation. Glob. Chang. Biol. 26, 5661–5678 (2020).

    Article  Google Scholar 

  • 38.

    Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (Fisheries Investigations, 1957).

  • 39.

    Stige, L. C. et al. Density- and size-dependent mortality in fish early life stages. Fish Fish. 20, 962–976 (2019).

    Article  Google Scholar 

  • 40.

    Linehan, J. E., Gregory, R. S. & Schneider, D. C. Predation risk of age-0 cod (Gadus) relative to depth and substrate in coastal waters. J. Exp. Mar. Biol. Ecol. 263, 25–44 (2001).

    Article  Google Scholar 

  • 41.

    Mattson, S. Food and feeding habits of fish species over a soft sublittoral bottom in the Northeast Atlantic: 1. Cod (Gadus morhua L.) (Gadidae). Sarsia 75, 247–260 (1990).

    Article  Google Scholar 

  • 42.

    Bromley, P. J. Evidence for density-dependent growth in North Sea gadoids. J. Fish Biol. 35, 117–123 (1989).

    Article  Google Scholar 

  • 43.

    Schopka, S. A. Fluctuations in the cod stock off Iceland during the twentieth century in the fisheries and environment. ICES Mar. Sci. Symp. 198, 175–193 (1994).

    Google Scholar 

  • 44.

    Martino, J. C., Fwoler, A. J., Doubleday, Z. A., Grammer, G. L. & Gillanders, B. M. Using otolith chronologies to understand long-term trends and extrinsic drivers of growth in fisheries. Ecosphere 10, e02553 (2019).

    Article  Google Scholar 

  • 45.

    Stephens, P. A. & Sutherland, W. J. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401–405 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Brander, K. M. Patterns of distribution, spawning, and growth in North Atlantic cod: The utility of inter-regional comparisons. ICES Mar. Sci. Symp. 198, 406–413 (1994).

    Google Scholar 

  • 47.

    Pálsson, ÓK. & Thorsteinsson, V. Migration patterns, ambient temperature, and growth of Icelandic cod (Gadus morhua): Evidence from storage tag data. Can. J. Fish. Aquat. Sci. 60, 1409–1423 (2003).

    Article  Google Scholar 

  • 48.

    Tanner, S. E. et al. Regional climate, primary productivity and fish biomass drive growth variation and population resilience in a small pelagic fish. Ecol. Indic. 103, 530–541 (2019).

    Article  Google Scholar 

  • 49.

    Zhai, L. et al. Phytoplankton phenology and production around Iceland and Faroes. Cont. Shelf Res. 37, 15–25 (2012).

    ADS  Article  Google Scholar 

  • 50.

    Heath, M. R. et al. Winter distribution, ontogenetic migration, and rates of egg production of Calanus finmarchicus southwest of Iceland. ICES J. Mar. Sci. 57, 1727–1739 (2000).

    Article  Google Scholar 

  • 51.

    Björnsson, B., Steinarsson, A. & Árnason, T. Growth model for Atlantic cod (Gadus morhua): Effects of temperature and body weight on growth rate. Aquaculture 271, 216–226 (2007).

    Article  Google Scholar 

  • 52.

    Björnsson, B. & Steinarsson, A. The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 59, 494–502 (2002).

    Article  Google Scholar 

  • 53.

    Arnold, P. A., Nicotra, A. B. & Kruuk, L. E. B. Sparse evidence for selection on phenotypic plasticity in response to temperature. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180185 (2019).

    Article  Google Scholar 

  • 54.

    Imsland, A. K. & Jónsdóttir, ÓD. B. Linking population genetics and growth properties of Atlantic cod. Rev. Fish Biol. Fish. 13, 1–26 (2003).

    Article  Google Scholar 

  • 55.

    Imsland, A. K. et al. A retrospective approach to fractionize variation in body mass of Atlantic cod Gadus morhua. J. Fish Biol. 78, 251–264 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D. & Kruuk, L. E. B. Phenotypic plasticity in a maternal trait in red deer. J. Anim. Ecol. 74, 387–396 (2005).

    Article  Google Scholar 

  • 57.

    Enberg, K. et al. Fishing-induced evolution of growth: Concepts, mechanisms and the empirical evidence. Mar. Ecol. 33, 1–25 (2012).

    ADS  Article  Google Scholar 

  • 58.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 27–35 (2003).

    Article  Google Scholar 

  • 59.

    Sólmundsson, J., Jónsdóttir, I. G., Ragnarsson, S. A. & Björnsson, B. Connectivity among offshore feeding areas and nearshore spawning grounds: Implications for management of migratory fish. ICES J. Mar. Sci. 75, 148–157 (2018).

    Article  Google Scholar 

  • 60.

    Weisberg, S., Spangler, G. & Richmond, L. S. Mixed effects models for fish growth. Can. J. Fish. Aquat. Sci. 277, 269–277 (2010).

    Article  Google Scholar 

  • 61.

    Smoliński, S. Sclerochronological approach for the identification of herring growth drivers in the Baltic Sea. Ecol. Indic. 101, 420–431 (2019).

    Article  Google Scholar 

  • 62.

    van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).

    Article  Google Scholar 

  • 63.

    Bailey, L. D. & van de Pol, M. climwin: An R toolbox for climate window analysis. PLoS ONE 11, 1–27 (2016).

    Google Scholar 

  • 64.

    Dingemanse, N. J. & Dochtermann, N. A. Quantifying individual variation in behaviour: Mixed-effect modelling approaches. J. Anim. Ecol. 82, 39–54 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    R Core Team. R: A Language and Environment for Statistical Computing (2018).

  • 66.

    Bates, D. et al.lme4: Linear Mixed-Effects Models using “Eigen” and S4. R package version 1.1-12. https://cran.r-project.org/web/packages/lme4/lme4.pdf (2016). doi:https://doi.org/10.18637/jss.v067.i01.

  • 67.

    Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (2004).

    Article  Google Scholar 

  • 68.

    Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009). https://doi.org/10.7289/V5C8276M


  • Source: Ecology - nature.com

    Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils

    Undergraduates ramp up research during pandemic diaspora