in

Roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra Flueck. trees

  • 1.

    Rodd, T. & Stackhouse, J. Tree: A Visual Guide (University of California Press, California, 2008).

    Google Scholar 

  • 2.

    Thulin, M. Boswellia sacra. The IUCN Red List of Threatened Species 1998: e.T34533A9874201. (1998).

  • 3.

    Gebrehiwot, K., Muys, B., Haile, M. & Mitloehner, R. Introducing Boswellia papyrifera (Del.) Hochst and its non-timber forest product, frankincense. Int. For. Rev. 5, 348–353 (2003).

    Google Scholar 

  • 4.

    Tolera, M. et al. Resin secretory structures of Boswellia papyrifera and implications for frankincense yield. Ann. Bot. 111, 61–68 (2013).

    PubMed  Article  Google Scholar 

  • 5.

    Khan, A. L. et al. Endogenous phytohormones of frankincense producing Boswellia sacra tree populations. PLoS ONE 13, e0207910 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Environment Society of Oman. Annual report 2014. 53 (2014). Available at: https://www.eso.org.om/index/images/file/2016-03/ESO_2014_Annual_Report_English.pdf. (Accessed: 17th August 2020)

  • 7.

    Bari, R. & Jones, J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Miller, B., Madilao, L. L., Ralph, S. & Bohlmann, J. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in sitka spruce. Plant Physiol. 137, 369–382 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    El Atta, H. A., Aref, I. M. & Khalil, S. A. Increased gum arabic production after infestation of acacia senegal with Aspergillus flavus and Pseudomonas pseudoalcaligenes transmitted by Agrilus nubeculosus. Afr. J. Biotechnol. 10, 7166–7173 (2011).

    Google Scholar 

  • 10.

    Evert, R. F. & Eichhorn, S. E. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body (John Wiley & Sons, New York, 2006).

    Google Scholar 

  • 11.

    Miyamoto, K. Physiological and biochemical studies on exudation of gum polysaccharides in plants. Regul. Plant Growth Dev. 50, 2–11 (2015).

    CAS  Google Scholar 

  • 12.

    Cabrita, P. A model for resin flow. In Plant cell and tissue differentiation and secondary metabolites 1–28 (Springer, Cham, 2019).

    Google Scholar 

  • 13.

    Kuroda, K. & Shimaji, K. Traumatic resin canal formation as a marker of xylem growth. For. Sci. 29, 653–659 (1983).

    Google Scholar 

  • 14.

    Krekling, T., Vincent, R. F., Berryman, A. A. & Christiansen, E. The structure and development of polyphenolic parenchyma cells in Norway spruce (Picea abies) bark. Flora 195, 354–369 (2000).

    Article  Google Scholar 

  • 15.

    Nagy, N. E., Franceschi, V. R., Solheim, H., Krekling, T. & Christiansen, E. Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits. Am. J. Bot. 87, 302–313 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Zeneli, G., Krokene, P., Christiansen, E., Krekling, T. & Gershenzon, J. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol. 26, 977–988 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Hudgins, J. W., Christiansen, E. & Franceschi, V. R. Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol. 23, 361–371 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Hudgins, J. W. & Franceschi, V. R. Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol. 135, 2134–3149 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Shain, L. Stem defense against pathogens. In Plant Stems: Physiology and Functional Morphology (ed. Gartner, B. L.) 383–406 (Academic Press, New York, 1995).

    Google Scholar 

  • 20.

    Yang, Y.-X., Ahammed, G., Wu, C., Fan, S. & Zhou, Y.-H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr. Protein Pept. Sci. 16, 450–461 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Hudgins, J. W., Ralph, S. G., Franceschi, V. R. & Bohlmann, J. Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224, 865–877 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Zhao, T. et al. The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies. Phytochemistry 71, 1332–1341 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Pieterse, C. M. J. & Van Loon, L. C. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4, 52–58 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Derksen, H., Rampitsch, C. & Daayf, F. Signaling cross-talk in plant disease resistance. Plant Sci. 207, 79–87 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Thaler, J. S., Humphrey, P. T. & Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17, 260–270 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Saniewski, M., Nowacki, J. & Czapski, J. The effect of methyl jasmonate on ethylene production and ethylene-forming enzyme activity in tomatoes. J. Plant Physiol. 129, 175–180 (1987).

    CAS  Article  Google Scholar 

  • 28.

    Yi, Xu. et al. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6, 1077–1085 (1994).

    Article  Google Scholar 

  • 29.

    Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Métraux, J. P. & Broekaert, W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Creelman, R. A. & Mullet, J. E. Biosysnthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Sudha, G. & Ravishankar, G. A. Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid. Acta Physiol. Plant. 25, 249–256 (2003).

    CAS  Article  Google Scholar 

  • 32.

    Kunkel, B. N. & Brooks, D. M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325–331 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Telewski, F. W., Wakefield, A. H. & Jaffe, M. J. Computer-assisted image analysis of tissues of ethrel-treated Pinus taeda seedlings. Plant Physiol. 72, 177–181 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Yamamoto, F., Kozlowski, T. T. & Wolter, K. E. Effect of flooding on growth, stem anatomy, and ethylene production of Pinus halepensis seedlings. Can. J. For. Res. 17, 69–79 (1987).

    CAS  Article  Google Scholar 

  • 35.

    Kusumoto, D. & Suzuki, K. Induction of traumatic resin canals in Cupressaceae by ethrel application. Mokuzaigakkaishi 47, 1–6 (2001).

    Google Scholar 

  • 36.

    Lawton, K. A., Potter, S. L., Uknes, S. & Ryals, J. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6, 581–588 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Kozlowski, G., Buchala, A., Plant, J. M. P. & Métraux, J. P. Methyl jasmonate protects Norway spruce seedlings against Pythium ultimum Trow. Physiol. Mol. Plant Pathol. 55, 53–58 (1999).

    CAS  Article  Google Scholar 

  • 38.

    Arango-Velez, A. et al. Differences in defence responses of Pinus contorta and Pinus banksiana to the mountain pine beetle fungal associate Grosmannia clavigera are affected by water deficit. Plant Cell Environ. 39, 726–744 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Krokene, P., Nagy, N. E. & Solheim, H. Methyl jasmonate and oxalic acid treatment of Norway spruce: Anatomically based defense responses and increased resistance against fungal infection. Tree Physiol. 28, 29–35 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Krokene, P., Nagy, N. E. & Krekling, T. Traumatic resin ducts and polyphenolic parenchyma cells in conifers. In Induced Plant Resistance to Herbivory 147–169 (Springer, Berlin, 2008). https://doi.org/10.1007/978-1-4020-8182-8_7.

    Google Scholar 

  • 41.

    WMO. World Weather Information Service. World Weather Information Service (2019). Available at: https://worldweather.wmo.int/en/city.html?cityId=113. (Accessed: 22nd August 2020)

  • 42.

    Abeles, F. B., Morgan, P. W. & Saltveit, M. E. Ethylene in plant biology (Elsevier Inc, Amsterdam, 2012). https://doi.org/10.1016/C2009-0-03226-7.

    Google Scholar 

  • 43.

    Yamamoto, F., Sakata, T. & Terazawa, K. Growth, morphology, stem anatomy, and ethylene production in flooded Alnus japonica seedlings. IAWA J. 16, 47–59 (1995).

    Article  Google Scholar 

  • 44.

    Du, S., Sugano, M., Tsushima, M., Nakamura, T. & Yamamoto, F. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation. J. Plant Res. 117, 171–174 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Wilkes, J., Dale, G. T. & Old, K. M. Production of ethylene by Endothia gyrosa and Cytospora eucalypticola and its possible relationship to kino vein formation in Eucalyptus maculata. Physiol. Mol. Plant Pathol. https://doi.org/10.1016/0885-5765(89)90024-6 (1989).

    Article  Google Scholar 

  • 46.

    Popp, M. P., Johnson, J. D. & Lesney, M. S. Changes in ethylene production and monoterpene concentration in slash pine and loblolly pine following inoculation with bark beetle vectored fungi. Tree Physiol. 15, 807–812 (1995).

    CAS  Article  Google Scholar 

  • 47.

    Yamamoto, F. & Kozlowski, T. Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy and ethylene production of Pinus densiflora seedlings. J. Exp. Bot. 38, 293–310 (1987).

    CAS  Article  Google Scholar 

  • 48.

    Heijari, J. et al. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomol. Exp. Appl. 115, 117–124 (2005).

    CAS  Article  Google Scholar 

  • 49.

    Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A. & Raskin, I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3, 809–818 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Enyedi, A. J., Yalpani, N., Silverman, P. & Raskin, I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus (systemic acquired resistance/pathogenesis-related proteins/glucosyltransferase/sigaI transduction). Plant Biol. 89, 2 (1992).

    Google Scholar 

  • 51.

    Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M. & Dong, X. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12, 2175–2190 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Kozlowski, G. & Métraux, J. P. Infection of Norway spruce (Picea abies (L.) Karst.) seedlings with Pythium irregulare Buism. and Pythium ultimum Trow.: histological and biochemical responses. Eur. J. Plant Pathol. 104, 225–234 (1998).

    CAS  Article  Google Scholar 

  • 53.

    Davis, J. M. et al. Pathogen challenge, salicylic acid, and jasmonic acid regulate expression of chitinase gene homologs in pine. Mol. Plant-Microbe Interact. 15, 380–387 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J. & Klee, H. J. Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J. 25, 315–323 (2001).

    PubMed  Article  Google Scholar 

  • 55.

    Doares, S. H., Narváez-Vpsquez, J., Conconi, A. & Ryan, C. A. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108, 1741–1742 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Dekebo, A., Zewdu, M. & Dagne, E. Volatile oils of frankincense from Boswellia papyrifera. Bull. Chem. Soc. Ethiop. 13, 93–96 (1999).

    CAS  Article  Google Scholar 

  • 57.

    GHCN. Global Historical Climatology Network (GHCN) | National Centers for Environmental Information (NCEI) formerly known as National Climatic Data Center (NCDC). (2020).

  • 58.

    Ahmed, A. E. M. et al. Effects of ethephon and methyl jasmonate on physicochemical properties of Acacia seyal var. seyal (L.) gum produced in Sudan. Food Hydrocoll. 90, 413–420 (2019).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils

    Undergraduates ramp up research during pandemic diaspora