in

Rural–urban scaling of age, mortality, crime and property reveals a loss of expected self-similar behaviour

  • 1.

    Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. 104, 7301–7306 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Bettencourt, L. M. A., Lobo, J., Strumsky, D. & West, G. B. Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities. PLoS ONE 5, e13541 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    van Raan, A. F. J., van der Meulen, G. & Goedhart, W. Urban Scaling of Cities in the Netherlands. arXiv Prepr. arXiv1503.04795 (2015).

  • 4.

    Alves, L. G. A., Ribeiro, H. V. & Mendes, R. S. Scaling laws in the dynamics of crime growth rate. Phys. A 392, 2672–2679 (2013).

    Article  Google Scholar 

  • 5.

    Society, S., Annaler, G. & Geography, H. Urban Allometric Growth Author (s): Stig Nordbeck Published by : Wiley on behalf of the Swedish Society for Anthropology and Geography Stable URL : https://www.jstor.org/stable/490887dy/Iydx. 53, 54–67 (2016).

  • 6.

    Gomez-Lievano, A., Youn, H. J. & Bettencourt, L. M. A. The statistics of urban scaling and their connection to Zipf’s law. PLoS ONE 7, e40393 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Hanley, Q. S., Lewis, D. & Ribeiro, H. V. Rural to urban population density scaling of crime and property transactions in english and welsh parliamentary constituencies. PLoS ONE 11, e0149546 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Ribeiro, H. V., Hanley, Q. S. & Lewis, D. Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools. PLoS ONE 13, e0192931 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Bettencourt, L., Lobo, J. & Youn, H. The hypothesis of urban scaling: formalization, implications and challenges. arXiv Prepr. arXiv1301.5919 (2013).

  • 10.

    Alves, L. G. A., Ribeiro, H. V., Lenzi, E. K. & Mendes, R. S. Distance to the scaling law: A useful approach for unveiling relationships between crime and urban metrics. PLoS ONE 8, e69580 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Alves, L. G. A., Mendes, R. S., Lenzi, E. K. & Ribeiro, H. V. Scale-adjusted metrics for predicting the evolution of urban indicators and quantifying the performance of cities. PLoS ONE 10, e0134862 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Advisory Committee Allocation Resource. Public health grant : Exposition book for proposed formula for 2016–17 target allocations – Technical Guide. (2016).

  • 13.

    NHS England Analytical Services (Finance). Technical Guide to Allocation Formulae and Pace of Change. (2016).

  • 14.

    Anonymous. Fair Shares: A guide to NHS Allocations. (2018).

  • 15.

    Green, A. E. The north–south divide in great Britain: An examination of the evidence. Trans. Inst. Br. Geogr. 13, 179 (1988).

    Article  Google Scholar 

  • 16.

    Hacking, J. M., Muller, S. & Buchan, I. E. Trends in mortality from 1965 to 2008 across the English north-south divide: Comparative observational study. BMJ 342, 1–9 (2011).

    Article  Google Scholar 

  • 17.

    Keeble, D. & Bryson, J. Small-firm creation and growth, regional development and the North-South divide in Britain. Environ. Plan. A 28, 909–934 (1996).

    Article  Google Scholar 

  • 18.

    United Nations. World Urbanisation Prospects: The 2014 Revision. ST/ESA/SER.A/366, (2015).

  • 19.

    Salvatore, M., Pozzi, F., Ataman, E., Huddleston, B. & Bloise, M. Mapping global urban and rural population distributions. (2005).

  • 20.

    Swiecki-Sikora, A. L., Henry, K. A. & Kepka, D. HPV vaccination coverage among us teens across the rural–urban continuum. J. Rural Heal. 35, 506–517 (2019).

    Article  Google Scholar 

  • 21.

    Li, K., Chen, Y., Wang, M. & Gong, A. Spatial–temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China. Sci. Total Environ. 669, 229–247 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Leitão, J. C., Miotto, J. M., Gerlach, M. & Altmann, E. G. Is this scaling nonlinear? Subject category: Subject areas. R Soc. Open Sci. 3, 150649 (2016).

    ADS  MathSciNet  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Finance, O. & Cottineau, C. Are the absent always wrong? Dealing with zero values in urban scaling. Environ. Plan. B Urban Anal. City Sci. 2, 1–15 (2018).

    Google Scholar 

  • 24.

    Hanley, Q. S., Khatun, S., Yosef, A. & Dyer, R. M. Fluctuation scaling, Taylor’s law, and crime. PLoS ONE 9, 2 (2014).

    Article  CAS  Google Scholar 

  • 25.

    Yang, V. C., Papachristos, A. V. & Abrams, D. M. The origin of urban productivity scaling laws: mathematical model and new empirical evidence. arXiv1712.00476, 1–9 (2017).

  • 26.

    Caminha, C. et al. Human mobility in large cities as a proxy for crime. PLoS ONE 12, 1–13 (2017).

    Article  CAS  Google Scholar 

  • 27.

    Grasmick, H. G., Tittle, C. R., Bursik, R. J. & Arneklev, B. J. Testing the core empirical implications of gottfredson and hirschi’s general theory of crime. J. Res. Crime Delinq. 30, 5–29 (1993).

    Article  Google Scholar 

  • 28.

    Pratt, T. C. & Cullen, F. T. The empirical status of Gottfredson and Hirchi’s general theory of crime: A meta-analysis. Criminology 38, 931–964 (2000).

    Article  Google Scholar 

  • 29.

    Wikström, P. O. H. Why Crime Happens: A Situational Action Theory. In Analytical Sociology: Actions and Networks (ed. Manzo, G.) 74–94 (Wiley, New York, 2014).

    Google Scholar 

  • 30.

    Wikström, P. O. H. Crime as alternative: Towards a cross-level situational action theory of crime causation. In Beyond Empiricism: Institutions and Intentions in the Study of Crime (ed. McCord, J.) 1–38 (Transaction Publishers, Abingdon, 2004).

    Google Scholar 

  • 31.

    Kinney, J. B., Mann, E. & Winterdyk, J. A. Crime Prevention. Crime Prevention: International Perspectives, Issues, and Trends (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781315314211.

    Google Scholar 

  • 32.

    Cottineau, C., Finance, O., Hatna, E., Arcaute, E. & Batty, M. Defining urban clusters to detect agglomeration economies. Environ. Plan. B Urban Anal. City Sci. 46, 1611–1626 (2019).

    Article  Google Scholar 

  • 33.

    Bettencourt, L. M. A. The origins of scaling in cities. Science (80-). 340, 1438–1441 (2013).

    ADS  MathSciNet  CAS  MATH  Article  Google Scholar 

  • 34.

    Lee, D., Cho, Y. S., Goh, K.-I., Lee, D.-S. & Kahng, B. Recent advances of percolation theory in complex networks. J. Korean Phys. Soc. 73, 152–164 (2018).

    ADS  Article  Google Scholar 

  • 35.

    Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3, 1–11 (2016).

    MathSciNet  Article  Google Scholar 

  • 36.

    Alves, L. G. A., Andrade, J. S., Hanley, Q. S. & Ribeiro, H. V. The hidden traits of endemic illiteracy in cities. Phys. A 515, 566–574 (2019).

    Article  Google Scholar 

  • 37.

    Wynder, E., Covey, L., Mabuchi, K. & Mushininski, M. Environmental factors in cancer of the larynx. A second Look. Cancer 38, 1591–1601 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    South, A. P. et al. Mutation signature analysis identifies increased mutation caused by tobacco smoke associated DNA adducts in larynx squamous cell carcinoma compared with oral cavity and oropharynx. Sci. Rep. 9, 1–9 (2019).

    ADS  Article  CAS  Google Scholar 

  • 39.

    Barnard-Kelly, K. D. et al. Suicide and self-inflicted injury in diabetes: A balancing act. J. Diabetes Sci. Technol. https://doi.org/10.1177/1932296819891136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Amiri, S. & Behnezhad, S. Cancer diagnosis and suicide mortality: A systematic review and meta-analysis. Arch. Suicide Res. 2, 1–19 (2019).

    Google Scholar 

  • 41.

    Alattas, M., Ross, C. S., Henehan, E. R. & Naimi, T. S. Alcohol policies and alcohol-attributable cancer mortality in U.S. States. Chem. Biol. Interact. 315, 108885 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA. 99, 7821–7826 (2002).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 43.

    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA. 103, 8577–8582 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, 1–12 (2008).

    MATH  Google Scholar 

  • 46.

    Kohonen, T. Self-organizing maps (Springer, Berlin, 2001).

    Google Scholar 

  • 47.

    Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480 (1990).

    Article  Google Scholar 

  • 48.

    Chang, M. Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare (Chapman and Hall/CRC, Boca Raton, 2020).

    Google Scholar 

  • 49.

    Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. https://doi.org/10.1111/1467-9868.00293 (2001).

    MathSciNet  Article  MATH  Google Scholar 

  • 50.

    Team, R. C. R: A language and environment for statistical computing. (2019).

  • 51.

    Muggeo, V. M. R. Segmented: An R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

    Google Scholar 

  • 52.

    Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Muggeo, V. M. R. Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling. J. Stat. Comput. Simul. 86, 3059–3067 (2016).

    MathSciNet  MATH  Article  Google Scholar 

  • 54.

    Muggeo, V. M. R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 59, 311–322 (2017).

    MathSciNet  MATH  Article  Google Scholar 

  • 55.

    Meyer, D. & Buchta, C. Proxy: Distance and similarity measures. (2019).

  • 56.

    Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) Functions. (2019).

  • 57.

    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Applications (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  • 58.

    Wehrens, R. & Kruisselbrink, J. Flexible self-organizing maps in kohonen 3.0. J. Stat. Softw. 87, 1–18 (2018).

    Article  Google Scholar 

  • 59.

    Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: The kohonen package. J. Stat. Softw. 21, 1–19 (2007).

    Article  Google Scholar 

  • 60.

    Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. (2019).

  • 61.

    Novomestky, L. K. and F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. (2015).

  • 62.

    Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Huber Andy Liaw, Thomas Lumley, M. & Maechler, Arni Magnusson, Steffen Moeller, M. S. and B. V. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1.1. (2019).

  • 63.

    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, New York, 2016).

    Google Scholar 

  • 64.

    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression. (Sage, 2019).

  • 65.

    Gross, J. & Ligges, U. nortest: Tests for normality. (2015).

  • 66.

    Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014).

  • 67.

    Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust}: An {R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).

    Article  Google Scholar 

  • 68.

    Wickham, H. et al. Welcome to the {tidyverse}. J. Open Source Softw. 4, 1686 (2019).

    ADS  Article  Google Scholar 

  • 69.

    Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2019).

  • 70.

    Revelle, W. psych: Procedures for psychological, psychometric, and personality research. (2019).

  • 71.

    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article  Google Scholar 

  • 72.

    Hijmans, R. J. raster: Geographic data analysis and modeling. (2020).

  • 73.

    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation, R package version 0.8.3. (2019).

  • 74.

    Bivand, R., Nowosad, J. & Lovelace, R. spData: Datasets for Spatial Analysis. (2020).

  • 75.

    Tennekes, M. {tmap}: Thematic maps in {R}. J. Stat. Softw. 84, 1–39 (2018).

    Article  Google Scholar 

  • 76.

    Cheng, J., Karambelkar, B. & Xie, Y. leaflet: Create interactive web maps with the javascript ‘Leaflet’ library. (2019).

  • 77.

    Appelhans, T., Detsch, F., Reudenbach, C. & Woellauer, S. mapview: Interactive Viewing of Spatial Data in R. (2019).

  • 78.

    Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web Application Framework for R. (2020).

  • 79.

    Urbanek, S. png: Read and write PNG images. (2013).

  • 80.

    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Third international AAAI conference on weblogs and social media (2009).


  • Source: Ecology - nature.com

    Undergraduates ramp up research during pandemic diaspora

    Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization