Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. 104, 7301–7306 (2007).
Bettencourt, L. M. A., Lobo, J., Strumsky, D. & West, G. B. Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities. PLoS ONE 5, e13541 (2010).
van Raan, A. F. J., van der Meulen, G. & Goedhart, W. Urban Scaling of Cities in the Netherlands. arXiv Prepr. arXiv1503.04795 (2015).
Alves, L. G. A., Ribeiro, H. V. & Mendes, R. S. Scaling laws in the dynamics of crime growth rate. Phys. A 392, 2672–2679 (2013).
Society, S., Annaler, G. & Geography, H. Urban Allometric Growth Author (s): Stig Nordbeck Published by : Wiley on behalf of the Swedish Society for Anthropology and Geography Stable URL : https://www.jstor.org/stable/490887dy/Iydx. 53, 54–67 (2016).
Gomez-Lievano, A., Youn, H. J. & Bettencourt, L. M. A. The statistics of urban scaling and their connection to Zipf’s law. PLoS ONE 7, e40393 (2012).
Hanley, Q. S., Lewis, D. & Ribeiro, H. V. Rural to urban population density scaling of crime and property transactions in english and welsh parliamentary constituencies. PLoS ONE 11, e0149546 (2016).
Ribeiro, H. V., Hanley, Q. S. & Lewis, D. Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools. PLoS ONE 13, e0192931 (2018).
Bettencourt, L., Lobo, J. & Youn, H. The hypothesis of urban scaling: formalization, implications and challenges. arXiv Prepr. arXiv1301.5919 (2013).
Alves, L. G. A., Ribeiro, H. V., Lenzi, E. K. & Mendes, R. S. Distance to the scaling law: A useful approach for unveiling relationships between crime and urban metrics. PLoS ONE 8, e69580 (2013).
Alves, L. G. A., Mendes, R. S., Lenzi, E. K. & Ribeiro, H. V. Scale-adjusted metrics for predicting the evolution of urban indicators and quantifying the performance of cities. PLoS ONE 10, e0134862 (2015).
Advisory Committee Allocation Resource. Public health grant : Exposition book for proposed formula for 2016–17 target allocations – Technical Guide. (2016).
NHS England Analytical Services (Finance). Technical Guide to Allocation Formulae and Pace of Change. (2016).
Anonymous. Fair Shares: A guide to NHS Allocations. (2018).
Green, A. E. The north–south divide in great Britain: An examination of the evidence. Trans. Inst. Br. Geogr. 13, 179 (1988).
Hacking, J. M., Muller, S. & Buchan, I. E. Trends in mortality from 1965 to 2008 across the English north-south divide: Comparative observational study. BMJ 342, 1–9 (2011).
Keeble, D. & Bryson, J. Small-firm creation and growth, regional development and the North-South divide in Britain. Environ. Plan. A 28, 909–934 (1996).
United Nations. World Urbanisation Prospects: The 2014 Revision. ST/ESA/SER.A/366, (2015).
Salvatore, M., Pozzi, F., Ataman, E., Huddleston, B. & Bloise, M. Mapping global urban and rural population distributions. (2005).
Swiecki-Sikora, A. L., Henry, K. A. & Kepka, D. HPV vaccination coverage among us teens across the rural–urban continuum. J. Rural Heal. 35, 506–517 (2019).
Li, K., Chen, Y., Wang, M. & Gong, A. Spatial–temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China. Sci. Total Environ. 669, 229–247 (2019).
Leitão, J. C., Miotto, J. M., Gerlach, M. & Altmann, E. G. Is this scaling nonlinear? Subject category: Subject areas. R Soc. Open Sci. 3, 150649 (2016).
Finance, O. & Cottineau, C. Are the absent always wrong? Dealing with zero values in urban scaling. Environ. Plan. B Urban Anal. City Sci. 2, 1–15 (2018).
Hanley, Q. S., Khatun, S., Yosef, A. & Dyer, R. M. Fluctuation scaling, Taylor’s law, and crime. PLoS ONE 9, 2 (2014).
Yang, V. C., Papachristos, A. V. & Abrams, D. M. The origin of urban productivity scaling laws: mathematical model and new empirical evidence. arXiv1712.00476, 1–9 (2017).
Caminha, C. et al. Human mobility in large cities as a proxy for crime. PLoS ONE 12, 1–13 (2017).
Grasmick, H. G., Tittle, C. R., Bursik, R. J. & Arneklev, B. J. Testing the core empirical implications of gottfredson and hirschi’s general theory of crime. J. Res. Crime Delinq. 30, 5–29 (1993).
Pratt, T. C. & Cullen, F. T. The empirical status of Gottfredson and Hirchi’s general theory of crime: A meta-analysis. Criminology 38, 931–964 (2000).
Wikström, P. O. H. Why Crime Happens: A Situational Action Theory. In Analytical Sociology: Actions and Networks (ed. Manzo, G.) 74–94 (Wiley, New York, 2014).
Wikström, P. O. H. Crime as alternative: Towards a cross-level situational action theory of crime causation. In Beyond Empiricism: Institutions and Intentions in the Study of Crime (ed. McCord, J.) 1–38 (Transaction Publishers, Abingdon, 2004).
Kinney, J. B., Mann, E. & Winterdyk, J. A. Crime Prevention. Crime Prevention: International Perspectives, Issues, and Trends (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781315314211.
Cottineau, C., Finance, O., Hatna, E., Arcaute, E. & Batty, M. Defining urban clusters to detect agglomeration economies. Environ. Plan. B Urban Anal. City Sci. 46, 1611–1626 (2019).
Bettencourt, L. M. A. The origins of scaling in cities. Science (80-). 340, 1438–1441 (2013).
Lee, D., Cho, Y. S., Goh, K.-I., Lee, D.-S. & Kahng, B. Recent advances of percolation theory in complex networks. J. Korean Phys. Soc. 73, 152–164 (2018).
Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3, 1–11 (2016).
Alves, L. G. A., Andrade, J. S., Hanley, Q. S. & Ribeiro, H. V. The hidden traits of endemic illiteracy in cities. Phys. A 515, 566–574 (2019).
Wynder, E., Covey, L., Mabuchi, K. & Mushininski, M. Environmental factors in cancer of the larynx. A second Look. Cancer 38, 1591–1601 (1976).
South, A. P. et al. Mutation signature analysis identifies increased mutation caused by tobacco smoke associated DNA adducts in larynx squamous cell carcinoma compared with oral cavity and oropharynx. Sci. Rep. 9, 1–9 (2019).
Barnard-Kelly, K. D. et al. Suicide and self-inflicted injury in diabetes: A balancing act. J. Diabetes Sci. Technol. https://doi.org/10.1177/1932296819891136 (2019).
Amiri, S. & Behnezhad, S. Cancer diagnosis and suicide mortality: A systematic review and meta-analysis. Arch. Suicide Res. 2, 1–19 (2019).
Alattas, M., Ross, C. S., Henehan, E. R. & Naimi, T. S. Alcohol policies and alcohol-attributable cancer mortality in U.S. States. Chem. Biol. Interact. 315, 108885 (2020).
Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA. 99, 7821–7826 (2002).
Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA. 103, 8577–8582 (2006).
Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, 1–12 (2008).
Kohonen, T. Self-organizing maps (Springer, Berlin, 2001).
Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480 (1990).
Chang, M. Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare (Chapman and Hall/CRC, Boca Raton, 2020).
Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. https://doi.org/10.1111/1467-9868.00293 (2001).
Team, R. C. R: A language and environment for statistical computing. (2019).
Muggeo, V. M. R. Segmented: An R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).
Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).
Muggeo, V. M. R. Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling. J. Stat. Comput. Simul. 86, 3059–3067 (2016).
Muggeo, V. M. R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 59, 311–322 (2017).
Meyer, D. & Buchta, C. Proxy: Distance and similarity measures. (2019).
Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) Functions. (2019).
Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Applications (Cambridge University Press, Cambridge, 1997).
Wehrens, R. & Kruisselbrink, J. Flexible self-organizing maps in kohonen 3.0. J. Stat. Softw. 87, 1–18 (2018).
Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: The kohonen package. J. Stat. Softw. 21, 1–19 (2007).
Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. (2019).
Novomestky, L. K. and F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. (2015).
Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Huber Andy Liaw, Thomas Lumley, M. & Maechler, Arni Magnusson, Steffen Moeller, M. S. and B. V. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1.1. (2019).
Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, New York, 2016).
Fox, J. & Weisberg, S. An {R} Companion to Applied Regression. (Sage, 2019).
Gross, J. & Ligges, U. nortest: Tests for normality. (2015).
Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014).
Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust}: An {R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).
Wickham, H. et al. Welcome to the {tidyverse}. J. Open Source Softw. 4, 1686 (2019).
Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2019).
Revelle, W. psych: Procedures for psychological, psychometric, and personality research. (2019).
Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
Hijmans, R. J. raster: Geographic data analysis and modeling. (2020).
Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation, R package version 0.8.3. (2019).
Bivand, R., Nowosad, J. & Lovelace, R. spData: Datasets for Spatial Analysis. (2020).
Tennekes, M. {tmap}: Thematic maps in {R}. J. Stat. Softw. 84, 1–39 (2018).
Cheng, J., Karambelkar, B. & Xie, Y. leaflet: Create interactive web maps with the javascript ‘Leaflet’ library. (2019).
Appelhans, T., Detsch, F., Reudenbach, C. & Woellauer, S. mapview: Interactive Viewing of Spatial Data in R. (2019).
Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web Application Framework for R. (2020).
Urbanek, S. png: Read and write PNG images. (2013).
Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Third international AAAI conference on weblogs and social media (2009).
Source: Ecology - nature.com