in

Mechanisms of possible self-limitation in the invasive Asian shore crab Hemigrapsus sanguineus

  • 1.

    Bowman, W.D., Hacker, S.D., Cain, M.L. Ecology, 4th Edn. (Sinauer Press, 2017).

  • 2.

    Eggleston, D. B., Lipcius, R. N. & Hines, A. H. Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patterns. Mar. Ecol. Progr. Ser. 85, 55–68 (1992).

    ADS  Article  Google Scholar 

  • 3.

    Boström-Einarsson, L., Bonin, M. C., Munday, P. L. & Jones, G. P. Strong intraspecific competition and habitat selectivity influence abundance of a coral-dwelling damselfish. J. Exp. Mar. Biol. Ecol. 448, 85–92 (2013).

    Article  Google Scholar 

  • 4.

    Ruggerone, G.T., Zimmermann, M., Myers, K.W., Nielsen, J.L., & Rogers, D.E. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean. Fish. Oceanogr. 12, 209–219 (2003).

  • 5.

    Greer, A. L., Briggs, C. J. & Collins, J. P. Testing a key assumption of host-pathogen theory: Density and disease transmission. Oikos 117, 1667–1673 (2008).

    Article  Google Scholar 

  • 6.

    Turchin, P. Does population ecology have general laws?. Oikos 94, 17–26 (2001).

    Article  Google Scholar 

  • 7.

    Yenni, G., Adler, P. B. & Ernest, S. M. Strong self-limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012).

    PubMed  Article  Google Scholar 

  • 8.

    Weis, A. E., Simms, E. L. & Hochberg, M. E. Will plant vigor and tolerance be genetically correlated? Effects of intrinsic growth rate and self-limitation on regrowth. Evol. Ecol. 14, 331–352 (2000).

    Article  Google Scholar 

  • 9.

    Marino, A., Rodríguez, V. & Pazos, G. Resource-defense polygyny and self-limitation of population density in free-ranging guanacos. Behav. Ecol. 27, 757–765 (2016).

    Article  Google Scholar 

  • 10.

    Chamaillé-Jammes, S., Fritz, H., Valeix, M., Murindagomo, F. & Clobert, J. Resource variability, aggregation and direct density dependence in an open context: The local regulation of an African elephant population. J. Anim. Ecol. 77, 135–144 (2008).

    PubMed  Article  Google Scholar 

  • 11.

    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).

    Article  Google Scholar 

  • 12.

    Sedinger, J. S., Herzog, M. P., Person, B. T., Kirk, M. T., Obritchkewitch, T., Martin, P. P., & Bosque, C. Large-scale variation in growth of Black Brant goslings related to food availability. Auk 118, 1088–1095 (2001).

  • 13.

    Marschall, E. A. & Crowder, L. B. Density-dependent survival as a function of size in juvenile salmonids in streams. Can. J. Fish. Aquat. Sci. 52, 136–140 (1995).

    Article  Google Scholar 

  • 14.

    Zheng, X., Huang, L., Huang, B. & Lin, Y. Factors regulating population dynamics of the amphipod Ampithoe valida in a eutrophic subtropical coastal lagoon. Acta Oceanol. Sin. 32, 56–65 (2013).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Li, G. Y., & Zhang, Z. Q. Does size matter? Fecundity and longevity of spider mites (Tetranychus urticae) in relation to mating and food availability. Syst. Appl. Acarol.-UK 23, 1796–1808 (2018).

  • 16.

    Niu, H., Zhao, L. & Sun, J. Phenotypic plasticity of reproductive traits in response to food availability in invasive and native species of nematode. Biol. Inv. 15, 1407–1415 (2013).

    Article  Google Scholar 

  • 17.

    Cannizzo, Z. J., Lang, S. Q., Benitez-Nelson, B. & Griffen, B. D. An artificial habitat increases the reproductive fitness of a range-shifting species within a newly colonized ecosystem. Sci. Rep. 10, 1–13 (2020).

    Article  CAS  Google Scholar 

  • 18.

    Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Evol. Syst. 32, 95–126 (2001).

    Article  Google Scholar 

  • 19.

    Strayer, D. L., D’Antonio, C. M., Essl, F., Fowler, M. S., Geist, J., Hilt, S., & Latzka, A. W. Boom‐bust dynamics in biological invasions: Towards an improved application of the concept. Ecol. Lett. 20, 1337–1350 (2017).

  • 20.

    Jaćimović, M. et al. Boom-bust like dynamics of invasive black bullhead (Ameiurus melas) in Lake Sava (Serbia). Fish. Manag. Ecol. 26, 153–164 (2019).

    Article  Google Scholar 

  • 21.

    Alcorlo, P., Geiger, W., & Otero, M. Reproductive biology and life cycle of the invasive crayfish Procambarus clarkii (Crustacea: Decapoda) in diverse aquatic habitats of South-Western Spain: Implications for population control. Fund. Appl. Limnol./Arch. Hydrobiol. 173, 197–212 (2008).

  • 22.

    Melero, Y., Robinson, E., & Lambin, X. Density-and age-dependent reproduction partially compensates culling efforts of invasive non-native American mink. Biol. Invasions 17, 2645–2657.

  • 23.

    Yoshida, K., Hoshikawa, K., Wada, T. & Yusa, Y. Patterns of density dependence in growth, reproduction and survival in the invasive freshwater snail Pomacea canaliculata in Japanese rice fields. Freshw. Biol. 58, 2065–2073 (2013).

    Article  Google Scholar 

  • 24.

    Williams, A. B. & McDermott, J. J. An eastern United States record for the western Indo-Pacific crab, Hemigrapsus sanguineus (Crustacea: Decapoda: Grapsidae). Proc. Biol. Soc. Wash. 103, 108–109 (1990).

    Google Scholar 

  • 25.

    Breton, G., Faasse, M., Noël, P. & Vincent, T. A new alien crab in Europe: Hemigrapsus sanguineus (Decapoda: Brachyura: Grapsidae). J. Crustacean Biol. 22, 184–189 (2002).

    Article  Google Scholar 

  • 26.

    Blakeslee, A. M., Kamakura, Y., Onufrey, J., Makino, W., Urabe, J., Park, S., & Miura, O. Reconstructing the invasion history of the Asian shorecrab, Hemigrapsus sanguineus (De Haan 1835) in the Western Atlantic. Mar. Biol. 164, 47 (2017).

  • 27.

    Lohrer, A. M. & Whitlatch, R. B. Interactions among aliens: Apparent replacement of one exotic species by another. Ecology 83, 719–732 (2002).

    Article  Google Scholar 

  • 28.

    Kraemer, G. P., Sellberg, M., Gordon, A. & Main, J. Eight-year record of Hemigrapsus sanguineus (Asian shore crab) invasion in western Long Island Sound estuary. Northeast. Nat. 14, 207–224 (2007).

    Article  Google Scholar 

  • 29.

    Epifanio, C. E. Invasion biology of the Asian shore crab Hemigrapsus sanguineus: A review. J. Exp. Mar. Biol. Ecol. 441, 33–49 (2013).

    Article  Google Scholar 

  • 30.

    Lord, J. P. & Williams, L. M. Increase in density of genetically diverse invasive Asian shore crab (Hemigrapsus sanguineus) populations in the Gulf of Maine. Biol. Invasions 19, 1153–1168 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Brousseau, D. J., Kriksciun, K. & Baglivo, J. A. Fiddler crab burrow usage by the Asian crab, Hemigrapsus sanguineus, in a Long Island Sound salt marsh. Northeast. Nat. 10, 415–420 (2003).

    Article  Google Scholar 

  • 32.

    O’Connor, N. J. Invasion dynamics on a temperate rocky shore: from early invasion to establishment of a marine invader. Biol. Invasions 16, 73–87 (2014).

    Article  Google Scholar 

  • 33.

    O’Connor, N. J. Changes in population sizes of Hemigrapsus sanguineus (Asian Shore Crab) and resident crab species in southeastern New England (2010–2016). Northeast. Nat. 25, 197–201 (2018).

    Article  Google Scholar 

  • 34.

    Schab, C. M., Park, S., Waidner, L. A. & Epifanio, C. E. Return of the native: Historical comparison of invasive and indigenous crab populations near the mouth of Delaware Bay. J. Shellfish Res. 32, 751–758 (2013).

    Article  Google Scholar 

  • 35.

    Bloch, C. P., Curry, K. D., Fisher-Reid, M. C. & Surasinghe, T. D. Population Decline of the Invasive Asian Shore Crab (Hemigrapsus sanguineus) and Dynamics of Associated Intertidal Invertebrates on Cape Cod, Massachusetts. Northeast. Nat. 26, 772–784 (2019).

    Article  Google Scholar 

  • 36.

    Kraemer, G. P. Changes in population demography and reproductive output of the invasive Hemigrapsus sanguineus (Asian Shore Crab) in the Long Island Sound from 2005 to 2017. Northeast. Nat. 26, 81–94 (2019).

    Article  Google Scholar 

  • 37.

    Stentiford, G. D., Bateman, K. S., Dubuffet, A., Chambers, E., & Stone, D. M. Hepatospora eriocheir (Wang and Chen, 2007) gen. et comb. nov. infecting invasive Chinese mitten crabs (Eriocheir sinensis) in Europe. J. Invertebr. Pathol. 108, 156–166 (2011).

  • 38.

    Bateman, A. W., Buttenschön, A., Erickson, K. D. & Marculis, N. G. Barnacles vs bullies: Modelling biocontrol of the invasive European green crab using a castrating barnacle parasite. Theor. Ecol. 10, 305–318 (2017).

    Article  Google Scholar 

  • 39.

    Bojko, J., Stebbing, P. D., Dunn, A. M., Bateman, K. S., Clark, F., Kerr, Stewart-Clark, S., Johannesen, Á., & Stentiford, G. D. Green crab Carcinus maenas symbiont profiles along a North Atlantic invasion route. Dis. Aquat. Organ. 128, 147–168 (2018).

  • 40.

    Jensen, G. C., McDonald, P. S. & Armstrong, D. A. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Progr. Ser. 225, 251–262 (2002).

    ADS  Article  Google Scholar 

  • 41.

    DeRivera, C. E., Ruiz, G. M., Hines, A. H. & Jivoff, P. Biotic resistance to invasion: Native predator limits abundance and distribution of an introduced crab. Ecology 86, 3364–3376 (2005).

    Article  Google Scholar 

  • 42.

    Kim, A. K. & O’Connor, N. J. Early stages of the Asian shore crab Hemigrapsus sanguineus as potential prey for the striped killifish Fundulus majalis. J. Exp. Mar. Biol. Ecol. 346, 28–35 (2007).

    Article  Google Scholar 

  • 43.

    Brousseau, D. J., Murphy, A. E., Enriquez, N. P. & Gibbons, K. Foraging by two estuarine fishes, Fundulus heteroclitus and Fundulus majalis, on juvenile Asian shore crabs (Hemigrapsus sanguineus) in Western Long Island Sound. Estuar. Coast. 31, 144–151 (2008).

    Article  Google Scholar 

  • 44.

    Savaria, M. C. & O’Connor, N. J. Predation of the non-native Asian shore crab Hemigrapsus sanguineus by a native fish species, the cunner (Tautogolabrus adspersus). J. Exp. Mar. Biol. Ecol. 449, 335–339 (2013).

    Article  Google Scholar 

  • 45.

    Griffen, B. D. & Delaney, D. G. Species invasion shifts the importance of predator dependence. Ecology 88, 3012–3021 (2007).

    PubMed  Article  Google Scholar 

  • 46.

    Keogh, C. L., Miura, O., Nishimura, T. & Byers, J. E. The double edge to parasite escape: invasive host is less infected but more infectable. Ecology 98, 2241–2247 (2017).

    PubMed  Article  Google Scholar 

  • 47.

    Kroft, K. L. & Blakeslee, A. M. Comparison of parasite diversity in native panopeid mud crabs and the invasive Asian shore crab in estuaries of northeast North America. Aquat. Invasions 11, 287–301 (2016).

    Article  Google Scholar 

  • 48.

    Blakeslee, A. M., Keogh, C. L., Byers, J. E., Lafferty, A. M. K. K. D. & Torchin, M. E. Differential escape from parasites by two competing introduced crabs. Mar. Ecol. Progr. Ser. 393, 83–96 (2009).

    ADS  Article  Google Scholar 

  • 49.

    Lohrer, A. M., Fukui, Y., Wada, K. & Whitlatch, R. B. Structural complexity and vertical zonation of intertidal crabs, with focus on habitat requirements of the invasive Asian shore crab, Hemigrapsus sanguineus (de Haan). J. Exp. Mar. Biol. Ecol. 244, 203–217 (2000).

    Article  Google Scholar 

  • 50.

    Ledesma, M. E. & O’Connor, N. J. Habitat and diet of the non-native crab Hemigrapsus sanguineus in southeastern New England. Northeast. Nat. 8, 63–78 (2001).

    Article  Google Scholar 

  • 51.

    Brousseau, D. J. & Goldberg, R. Effect of predation by the invasive crab Hemigrapsus sanguineus on recruiting barnacles Semibalanus balanoides in western Long Island Sound, USA. Mar. Ecol. Progr. Ser. 339, 221–228 (2007).

    ADS  Article  Google Scholar 

  • 52.

    Brousseau, D. J. & Baglivo, J. A. Laboratory investigations of food selection by the Asian shore crab, Hemigrapsus sanguineus: Algal versus animal preference. J. Crustacean Biol. 25, 130–134 (2005).

    Article  Google Scholar 

  • 53.

    Griffen, B. D. Linking individual diet variation and fecundity in an omnivorous marine consumer. Oecologia 174, 121–130 (2014).

    ADS  PubMed  Article  Google Scholar 

  • 54.

    Riley, M. E., Vogel, M. & Griffen, B. D. Fitness-associated consequences of an omnivorous diet for the mangrove tree crab Aratus pisonii. Aquat. Biol. 20, 35–43 (2014).

    Article  Google Scholar 

  • 55.

    Griffen, B. D. & Norelli, A. P. Spatially variable habitat quality contributes to within-population variation in reproductive success. Ecol. Evol. 5, 1474–1483 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Griffen, B. D. & Riley, M. E. Potential impacts of invasive crabs on one life history strategy of native rock crabs in the Gulf of Maine. Biol. Invasions 17, 2533–2544 (2015).

    Article  Google Scholar 

  • 57.

    Belgrad, B. A. & Griffen, B. D. The influence of diet composition on fitness of the blue crab, Callinectes sapidus. PLoS ONE 11, e0145481 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 58.

    Griffen, B. D., Vogel, M., Goulding, L. & Hartman, R. Energetic effects of diet choice by invasive Asian shore crabs: Implications for persistence when prey are scarce. Mar. Ecol. Progr. Ser. 522, 181–192 (2015).

    ADS  Article  Google Scholar 

  • 59.

    Griffen, B. D. The timing of energy allocation to reproduction in an important group of marine consumers. PLoS ONE 13, e0199043 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 60.

    Guiñez, R., Petraitis, P. S. & Castilla, J. C. Layering, the effective density of mussels and mass-boundary curves. Oikos 110, 186–190 (2005).

    Article  Google Scholar 

  • 61.

    Bertness, M. D., Gaines, S. D. & Yeh, S. M. Making mountains out of barnacles: The dynamics of acorn barnacle hummocking. Ecology 79, 1382–1394 (1998).

    Article  Google Scholar 

  • 62.

    Guiñez, R. & Castilla, J. C. An allometric tridimensional model of self-thinning for a gregarious tunicate. Ecology 82, 2331–2341 (2001).

    Article  Google Scholar 

  • 63.

    Alunno-Bruscia, M., Petraitis, P. S., Bourget, E. & Fréchette, M. Body size–density relationship for Mytilus edulis in an experimental food-regulated situation. Oikos 90, 28–42 (2000).

    Article  Google Scholar 

  • 64.

    Weller, D. E. A reevaluation of the‐3/2 power rule of plant self‐thinning. Ecol. Monogr. 57, 23–43 (1987).

  • 65.

    Griffen, B. D. & Byers, J. E. Community impacts of two invasive crabs: the interactive roles of density, prey recruitment, and indirect effects. Biol. Invasions 11, 927–940 (2009).

    Article  Google Scholar 

  • 66.

    Lohrer, A. M. & Whitlatch, R. B. Relative impacts of two exotic brachyuran species on blue mussel populations in Long Island Sound. Mar. Ecol. Progr. Ser. 227, 135–144 (2002).

    ADS  Article  Google Scholar 

  • 67.

    Nelson, K. Scheduling of reproduction in relation to molting and growth in malacostracan crustaceans. Crustacean Egg Product. 7, 77–116 (1991).

    Google Scholar 

  • 68.

    Kibria, G. Studies on molting, molting frequency and growth of shrimp Penaeus monodon fed on natural and compounded diets. Asian Fish. Sci. 6, 203–211 (1993).

    Google Scholar 

  • 69.

    Petit, H., Nègre-Sadargues, G., Castillo, R. & Trilles, J. P. The effects of dietary astaxanthin on growth and moulting cycle of postlarval stages of the prawn, Penaeus japonicus (Crustacea, Decapoda). Comp. Biochem. Physiol. A Physiol. 117, 539–544 (1997).

    Article  Google Scholar 

  • 70.

    Clark, R. M., Zera, A. J. & Behmer, S. T. Nutritional physiology of life-history trade-offs: How food protein–carbohydrate content influences life-history traits in the wing-polymorphic cricket Gryllus firmus. J. Exp. Biol. 218, 298–308 (2015).

    PubMed  Article  Google Scholar 

  • 71.

    Rosa, R., Calado, R., Narciso, L. & Nunes, M. L. Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: A fatty acid approach. Mar. Biol. 151, 935–947 (2007).

    Article  Google Scholar 

  • 72.

    Hines, A. H. Allometric constraints and variables of reproductive effort in brachyuran crabs. Mar. Biol. 69, 309–320 (1982).

    Article  Google Scholar 

  • 73.

    Sorte, C. J., Davidson, V. E., Franklin, M. C., Benes, K. M., Doellman, M. M., Etter, R. J., & Menge, B. A. Long‐term declines in an intertidal foundation species parallel shifts in community composition. Global Change Biol.23, 341–352 (2017).

  • 74.

    Goedknegt, M. A., Havermans, J., Waser, A. M., Luttikhuizen, P. C., Velilla, E., Camphuysen, K. C., & Thieltges, D. W. Cross-species comparison of parasite richness, prevalence, and intensity in a native compared to two invasive brachyuran crabs. Aquat. Invasions12, 201–212 (2017).

  • 75.

    Latham, A. & Poulin, R. Field evidence of the impact of two acanthocephalan parasites on the mortality of three species of New Zealand shore crabs (Brachyura). Mar. Biol. 141, 1131–1139 (2002).

    Article  Google Scholar 

  • 76.

    Latham, A. D. M. & Poulin, R. Effect of acanthocephalan parasites on hiding behaviour in two species of shore crabs. J. Helminthol. 76, 323–326 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 77.

    Griffen, B. D., van den Akker, D., NiNuzzo, E. R., Anderson, L. III, & Vernier, A. Comparing methods for predicting the impacts of invasive species (in press).

  • 78.

    Tyrrell, M.C., & Harris, L.G. Potential impact of the introduced Asian shore crab, Hemigrapsus sanguineus, in northern New England: Diet, feeding preferences, and overlap with the green crab, Carcinus maenas. in Marine Bioinvasions: Proceedings of the First National Conference, Cambridge, MA, 24–27 January 1999 (pp. 208–220). (MIT Sea Grant College Program, 2000).

  • 79.

    Spilmont, N., Gothland, M. & Seuront, L. Exogenous control of the feeding activity in the invasive Asian shore crab Hemigrapsus sanguineus (De Haan, 1835). Aquat. Invasions 10, 327–332 (2015).

    Article  Google Scholar 

  • 80.

    McDermott, J. J. The western Pacific brachyuran Hemigrapsus sanguineus (Grapsidae) in its new habitat along the Atlantic coast of the United States: reproduction. J. Crustacean Biol. 18, 308–316 (1998).

    Article  Google Scholar 

  • 81.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2019). https://www.R-project.org/.

  • 82.

    Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).

    PubMed  Article  Google Scholar 

  • 83.

    Wolcott, D. L. & O’Connor, N. J. Herbivory in crabs: Adaptations and ecological considerations. Am. Zool. 32, 370–381 (1992).

    Article  Google Scholar 

  • 84.

    Mattson, W. J. Jr. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Evol. Syst. 11, 119–161 (1980).

    Article  Google Scholar 

  • 85.

    Griffen, B. D., Cannizzo, Z. J. & Gül, M. R. Ecological and evolutionary implications of allometric growth in stomach size of brachyuran crabs. PLoS ONE 13, e0207416 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 86.

    Gül, M. R. & Griffen, B. D. Diet, energy storage, and reproductive condition in a bioindicator species across beaches with different levels of human disturbance. Ecol. Indic. 117, 106636 (2020).

    Article  Google Scholar 

  • 87.

    Vogt, G. Functional cytology of the hepatopancreas of decapod crustaceans. J. Morphol. 280, 1405–1444 (2019).

    CAS  PubMed  Google Scholar 

  • 88.

    Kyomo, J. Analysis of the relationship between gonads and hepatopancreas in males and females of the crab Sesarma intermedia, with reference to resource use and reproduction. Mar. Biol. 97, 87–93 (1988).

    Article  Google Scholar 

  • 89.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., Smith, G. M. Zero-truncated and zero-inflated models for count data. in Mixed Effects Models and Extensions in Ecology with R 261–293. (Springer, New York, 2009).

  • 90.

    Mente, E. Effect of ration level on individual food consumption, growth and protein synthesis in the shore crab Carcinus maenas. In Nutrition, Physiology and Metabolism of Crustaceans 53–67 (Science Publishers, Enfield, 2003).

    Google Scholar 


  • Source: Ecology - nature.com

    High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77