in

Range expansion of muskox lungworms track rapid arctic warming: implications for geographic colonization under climate forcing

  • 1.

    Arneth, A. et al. Summary for Policymakers. (2019).

  • 2.

    Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Dobson, A., Molnár, P. K. & Kutz, S. Climate change and Arctic parasites. Trends Parasitol. 31, 181–188 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Chan, F. T. et al. Climate change opens new frontiers for marine species in the Arctic: current trends and future invasion risks. Glob. Chang. Biol. 25, 25–38 (2019).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago—Svalbard, Norway. Glob. Chang. Biol. 23, 490–502 (2017).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Kutz, S. J., Hoberg, E. P., Polley, L. & Jenkins, E. J. Global warming is changing the dynamics of Arctic host–parasite systems. Proc. R. Soc. Lond. B Biol. Sci. 272, 2571–2576 (2005).

    CAS  Google Scholar 

  • 8.

    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Hoberg, E. P. & Brooks, D. R. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130553 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Tomaselli, M., Gerlach, S. C., Kutz, S. J. & Checkley, S. L. Iqaluktutiaq voices: local perspectives about the importance of muskoxen, contemporary and traditional use and practices. Arctic 71, 1–14 (2018).

    Article  Google Scholar 

  • 11.

    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Hoberg, E. P., Galbreath, K. E., Cook, J. A., Kutz, S. J. & Polley, L. Northern host–parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. In Advances in Parasitology vol. 79. 1–97 (Elsevier, Amsterdam, 2012).

  • 13.

    Hoberg, E. P. et al. Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J. Helminthol. 91, 409–421 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    COSEWIC. COSEWIC Assessment and Status Report on the Caribou (Rangifer tarandus) Dolphin and Union population in Canada 2017 (2017)

  • 15.

    Cuyler, C. et al. Muskox status, recent variation, and uncertain future. Ambio 49, 1–15 (2019).

    Google Scholar 

  • 16.

    Kutz, S., Hoberg, E. & Polley, L. A new lungworm in muskoxen: an exploration in Arctic parasitology. Trends Parasitol. 17, 276–280 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Kafle, P., Sullivan, J., Verocai, G. G. & Kutz, S. J. Experimental life-cycle of Varestrongylus eleguneniensis(Nematoda: Protostrongylidae) in a captive Reindeer (Rangifer tarandus tarandus) and a Muskox (Ovibos moschatus moschatus). J. Parasitol. 103, 584–587 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Kafle, P., Peacock, S. J., Grond, S., Orsel, K. & Kutz, S. Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasit. Vectors 11, 400 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Kutz, S. J., Hoberg, E. P. & Polley, L. Experimental infections of muskoxen (Ovibos moschatus) and domestic sheep with Umingmakstrongylus pallikuukensis (Nematoda: Protostrongylidae): parasite development, population structure, and pathology. Can. J. Zool. 77, 1562–1572 (1999).

    Article  Google Scholar 

  • 20.

    Osborn, T. J. & Jones, P. The CRUTEM4 land-surface air temperature data set:Construction, previous versions and dissemination via Google earth. Earth Syst. Sci. Data 6, 61–68 (2014).

    ADS  Article  Google Scholar 

  • 21.

    Zhang, X. et al. Changes in temperature and precipitation across Canada; Chapter 4. In Canada’s Changing Climate Report (eds Bush, E. & Lemmen, D. S.) 112–193 (Ottawa, Ontario, Government of Canada, 2019).

    Google Scholar 

  • 22.

    Kutz, S. J. et al. Serendipitous discovery of a novel protostrongylid (Nematoda : Metastrongyloidea) in caribou, muskoxen, and moose from high latitudes of North America based on DNA sequence comparisons. Can. J. Zool. 85, 1143–1156 (2007).

    CAS  Article  Google Scholar 

  • 23.

    Hoberg, E. P., Polley, L., Gunn, A. & Nishi, J. S. Umingmakstrongylus pallikuukensis gen. nov. et sp. nov. (Nematoda: Protostrongylidae) from muskoxen, Ovibos moschatus, in the central Canadian Arctic, with comments on biology and biogeography. Can. J. Zool. Rev. Can. Zool. 73, 2266–2282 (1995).

    Article  Google Scholar 

  • 24.

    Forrester, S. G. & Lankester, M. W. Extracting protostrongylid nematode larvae from ungulate feces. J. Wildl. Dis. 33, 511–516 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Kafle, P. et al. Morphological keys to advance the understanding of protostrongylid biodiversity in caribou (Rangifer spp.) at high latitudes. Int. J. Parasitol. Parasites Wildl. 6, 331–339 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Kafle, P., Lejeune, M., Verocai, G. G., Hoberg, E. P. & Kutz, S. J. Morphological and morphometric differentiation of dorsal-spined first-stage larvae of lungworms (Nematoda: Protostrongylidae) infecting muskoxen (Ovibos moschatus) in the central Canadian Arctic. Int. J. Parasitol. Parasites Wildl.4 (2015).

  • 27.

    Hoberg, E. et al. Caudal polymorphism and cephalic morphology among first-stage larvae of Parelaphostrongylus odocoilei (Protostrongylidae: Elaphostrongylinae) in Dall’s sheep from the Mackenzie mountains, Canada. J. Parasitol. 91, 1318–1325 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Snyder, R. L., Spano, D., Cesaraccio, C. & Duce, P. Determining degree-day thresholds from field observations. Int. J. Biometeorol. 42, 177–182 (1999).

    ADS  Article  Google Scholar 

  • 29.

    Kutz, S. J., Hoberg, E. P. & Polley, L. Umingmakstrongylus pallikuukensis (Nematoda : Protostrongylidae) in gastropods: larval morphology, morphometrics, and development rates. J. Parasitol. 87, 527–535 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Dainton, B. H. Field and laboratory observations on slug and snail behaviour. Monograph-British Crop Protection Council (1989).

  • 31.

    Felber, R., Stoeckli, S. & Calanca, P. Generic calibration of a simple model of diurnal temperature variations for spatial analysis of accumulated degree-days. Int. J. Biometeorol. 62, 621–630 (2018).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Purcell, L. C. Comparison of thermal units derived from daily and hourly temperatures. Crop Sci. 43, 1874–1879 (2003).

    Article  Google Scholar 

  • 33.

    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).

    ADS  Article  Google Scholar 

  • 34.

    Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).

    ADS  Article  Google Scholar 

  • 35.

    Kutz, S. J., Hoberg, E. P., Nishi, J. & Polley, L. Development of the muskox lungworm, Umingmakstrongylus pallikuukensis (Protostrongylidae), in gastropods in the Arctic. Can. J. Zool. 80, 1977–1985 (2002).

    Article  Google Scholar 

  • 36.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

    Google Scholar 

  • 37.

    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Verocai, G. G. et al. The biogeography of the caribou lungworm, Varestrongylus eleguneniensis (Nematoda: Protostrongylidae) across northern North America. Int. J. Parasitol. Parasites Wildl 11, 93–102 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Verocai, G. G., Kutz, S. J., Simard, M. & Hoberg, E. P. Varestrongylus eleguneniensis sp n. (Nematoda: Protostrongylidae): a widespread, multi-host lungworm of wild North American ungulates, with an emended diagnosis for the genus and explorations of biogeography. Parasit. Vectors 7, 22 (2014).

    Article  Google Scholar 

  • 40.

    Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. 3, 1556 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Bush, E. & Lemmen, D. S. Canada’s Changing Climate Report; Government of Canada, Ottawa, ON. 444 (2019).

  • 42.

    Trenberth, K. E. Observation: surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007).

  • 43.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37 (2003).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 47.

    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 12, 450–455 (2006).

    ADS  Article  Google Scholar 

  • 48.

    Hope, A. G., Waltari, E., Payer, D. C., Cook, J. A. & Talbot, S. L. Future distribution of tundra refugia in northern Alaska. Nat Clim Change 3, 931–938 (2013).

    ADS  Article  Google Scholar 

  • 49.

    Hope, A. G. et al. Arctic biodiversity: increasing richness accompanies shrinking refugia for a cold-associated tundra fauna. Ecosphere 6, 1–67 (2015).

    ADS  Article  Google Scholar 

  • 50.

    Laaksonen, S. et al. Climate change promotes the emergence of serious disease outbreaks of filarioid nematodes. Ecohealth (2010).

  • 51.

    Kovats, R. S., Campbell-Lendrum, D. H., McMichel, A. J., Woodward, A. & Cox, J. S. H. Early effects of climate change: do they include changes in vector-borne disease?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1057–1068 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Hoberg, E. P. Invasive processes, mosaics and the structure of helminth parasite faunas. Rev. Sci. Tech. 29, 255 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Bryan, H. M. et al. Identification of Parelaphostrongylus odocoilei (Nematoda: Protostrongylidae) first-stage larvae in the feces of gray wolves (Canis lupus) by molecular methods. J. Wildl. Dis. 46, 297–302 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Bird, S. et al. Geography, seasonality, and host-associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecol. Evol. 23, 13202–13217 (2019).

    Article  Google Scholar 

  • 55.

    Prewer, E., Kutz, S., Leclerc, L. M. & Kyle, C. J. Already at the bottom? Demographic declines are unlikely further to undermine genetic diversity of a large Arctic ungulate: muskox, Ovibos moschatus (Artiodactyla: Bovidae). Biol. J. Linn. Soc. 129, 459–469 (2020).

    Article  Google Scholar 

  • 56.

    Kutz, S. J., Hoberg, E. P. & Polley, L. Emergence of third-stage larvae of Umingmakstrongylus pallikuukensis from three gastropod intermediate host species. J. Parasitol. 86, 743–749 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Sullivan, J. Developing a Systematic Sampling Framework for Terrestrial Gastropods in the Canadian Arcitc Calgary, Alberta (University of Calgary, Calgary, 2016).

    Google Scholar 

  • 58.

    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Kearney, M. & Porter, W. P. Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85, 3119–3131 (2004).

    Article  Google Scholar 

  • 60.

    Simon, J. A. et al. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol. Appl. 7, 750–764 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Vanhanen, H., Veteli, T. O., Paivinen, S., Kellomaki, S. & Niemela, P. Climate change and range shifts in two insect defoliators: gypsy moth and nun moth-a model study. Silva Fenn. 41, 621 (2007).

    Article  Google Scholar 

  • 62.

    Yang, G.-J. et al. A growing degree-days based time-series analysis for prediction of Schistosoma japonicum transmission in Jiangsu province, China. Am. J. Trop. Med. Hyg. 75, 549–555 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Molnár, P. K., Sckrabulis, J. P., Altman, K. A. & Raffel, T. R. Thermal performance curves and the metabolic theory of ecology-a practical guide to models and experiments for parasitologists. J. Parasitol. (2017).

  • 64.

    Laaksonen, S., Oksanen, A. & Hoberg, E. A lymphatic dwelling filarioid nematode, Rumenfilaria andersoni (Filarioidea; Splendidofilariinae), is an emerging parasite in Finnish cervids. Parasites Vectors 8, 228 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Laaksonen, S. et al. Filarioid nematodes, threat to arctic food safety and security. In Game Meat Hygiene: Food Safety and Security, 213–223 (Wageningen Academic Publishers, Wageningen, 2017).

  • 66.

    Brooks, D. R., Hoberg, E. P. & Boeger, W. A. The Stockholm Paradigm: Climate Change and Emerging Disease (University of Chicago Press, Chicago, 2019).

    Google Scholar 

  • 67.

    Cook, J. A. et al. The Beringian Coevolution Project: holistic collections of mammals and associated parasites reveal novel perspectives on evolutionary and environmental change in the North. Arctic Science 3, 585–617 (2016).

    Article  Google Scholar 

  • 68.

    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis, Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5). Cambridge, UK and New York, New York, USA (2013)

  • 69.

    Berkelhammer, M. Synchronous modes of terrestrial and marine productivity in the North Pacific. Front. Earth Sci.7 (2019).

  • 70.

    Agosta, S. J., Janz, N. & Brooks, D. R. How specialists can be generalists: resolving the” parasite paradox” and implications for emerging infectious disease. Zoologia (Curitiba) 27, 151–162 (2010).

    Article  Google Scholar 

  • 71.

    Araujo, S. B. et al. Understanding host-switching by ecological fitting. PLoS ONE10 (2015).

  • 72.

    IPCC Climate Change: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC (eds Core Writing Team et al.) 151 (IPCC, Geneva, 2014).

    Google Scholar 

  • 73.

    Ford, J. D. & Beaumier, M. Feeding the family during times of stress: experience and determinants of food insecurity in an Inuit community. Geograph J 177, 44–61 (2011).

    Article  Google Scholar 

  • 74.

    Kutz, S. et al. Erysipelothrix rhusiopathiae associated with recent widespread muskox mortalities in the Canadian Arctic. Can Vet J Rev Vet Can 56, 560–563 (2015).

    Google Scholar 

  • 75.

    Tomaselli, M. et al. Contagious ecthyma, rangiferine brucellosis, and lungworm infection in a muskox (Ovibos moschatus) from the Canadian Arctic, 2014. J. Wildl. Dis. 52, 719–724 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Kutz, S. et al. Muskox health ecology symposium 2016: gathering to share knowledge on Umingmak in a time of rapid change. Arctic 70, 225–236 (2017).

    Article  Google Scholar 

  • 77.

    Vors, L. S. & Boyce, M. S. Global declines of caribou and reindeer. Glob. Chang. Biol. 15, 2626–2633 (2009).

    ADS  Article  Google Scholar 

  • 78.

    Fisheries, N. Diseased ice seals|NOAA fisheries. NOAA https://www.fisheries.noaa.gov/alaska/marine-life-distress/diseased-ice-seals (2020).

  • 79.

    Jones, T. et al. Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PloS ONE14 (2019).

  • 80.

    Pörtner, H. O. Intergovernmental panel on climate change: summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air