in

Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current

  • 1.

    Pachauri, R. K. & Meyer, L. A. Intergovernmental panel on climate change (IPCC). In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).

  • 2.

    Feely, R. A., Sabine, C. L., Hernández-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. II 56, 1083–1094 (2009).

    Article  Google Scholar 

  • 4.

    Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2009).

    ADS  Article  Google Scholar 

  • 5.

    Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. 109, 15996–16003 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Thamdrup, B., Dalsgaard, T. & Revsbech, N. P. Widespread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep Sea Res. I 65, 36–45 (2012).

    CAS  Article  Google Scholar 

  • 7.

    Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920–920 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Friederich, G. E., Ledesma, J., Ulloa, O. & Chavez, F. P. Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Prog. Oceanogr. 79, 156–166 (2008).

    ADS  Article  Google Scholar 

  • 10.

    Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 88, 442–449 (2010).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006. https://doi.org/10.1029/2010JC006344 (2011).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Vargas, C. A. et al. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications. J. Geophys. Res. Biogeosci. 121, 15. https://doi.org/10.1002/2015JG003213 (2016).

    Article  Google Scholar 

  • 13.

    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084. https://doi.org/10.1038/s41559-017-0084 (2017).

    Article  Google Scholar 

  • 14.

    Booth, J. A. et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf Res. 45, 108–115 (2012).

    ADS  Article  Google Scholar 

  • 15.

    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Annu. Rev 26, 1–393 (1988).

    Google Scholar 

  • 16.

    Cohen, J. H. & Forward, R. B. Jr. Zooplankton diel vertical migration: A review of proximate control. Oceanogr. Mar. Biol. Ann. Rev 47, 77–110 (2009).

    Google Scholar 

  • 17.

    Brinton, E. Vertical migration and avoidance capability of euphausiids in the California current. Limnol. Oceanogr. 12, 451–483 (1967).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    McQuinn, I. H., Dion, M. & St. Pierre, J.-F. The acoustic multifrequency classification of two sympatric euphausiid species (Meganyctiphanes norvegica and Thysanoessa raschii), with empirical and SDWBA model validation. ICES J. Mar. Sci. 70, 636–649 (2013).

    Article  Google Scholar 

  • 19.

    Tremblay, N. & Abele, D. Response of three krill species to hypoxia and warming: An experimental approach to oxygen minimum zones expansion in coastal ecosystems. Mar. Ecol. 37, 179–199 (2016).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Ambriz-Arreola, I. et al. Vertical pelagic habitat of euphausiid species assemblages in the Gulf of California. Deep Sea Res. I 123, 75–89 (2017).

    CAS  Article  Google Scholar 

  • 21.

    Cooper, H. L., Potts, D. & Paytan, A. Metabolic responses of the North Pacific krill, Euphausia pacifica, to short- and long-term pCO2 exposure. Mar. Biol. 163, 207 (2016).

    Article  CAS  Google Scholar 

  • 22.

    Seibel, B. A., Schneider, J. L., Kaartvedt, S., Wishner, K. F. & Daly, K. L. Hypoxia tolerance and metabolic suppression in Oxygen Minimum Zone euphausiids: Implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56, 510–523 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Barry, J. P., Hall-Spencer, J. M. & Tyrrell, T. In Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds. Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. P.) 53–66 (Publications Office of the European Union, 2010).

  • 24.

    Paulmier, A., Ruiz-Pino, D., Garçon, V. & Farías, L. Maintaining of the eastern south Pacific oxygen minimum zone (OMZ) off Chile. Geophys. Res. Lett. 33, L20601 (2006).

    ADS  Article  CAS  Google Scholar 

  • 25.

    Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).

    PubMed  Article  Google Scholar 

  • 27.

    Garcia-Robledo, E. et al. Cryptic oxygen cycling in anoxic marine zones. Proc. Natl. Acad. Sci. USA 114, 8319–8324 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Wishner, K. F. et al. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci. Adv. 4, eaa518 (2018).

    Article  CAS  Google Scholar 

  • 30.

    Kawaguchi, S. et al. Will krill fare well under Southern Ocean acidification?. Biol. Lett. 7, 288–291 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Sperfeld, E., Mangor-Jensen, A. & Dalpadado, P. Effect of increasing seawater pCO2 on the northern Atlantic krill species Nyctiphanes couchii. Mar. Biol. 165, 116. https://doi.org/10.1007/s00227-018-3370-7 (2014).

    CAS  Article  Google Scholar 

  • 32.

    Cooper, H. L., Potts, D. C. & Paytan, A. Effects of elevated pCO2 on the survival, growth, and moulting of the Pacific krill species, Euphausia pacifica. ICES J. Mar. Sci. 74, 1005–1012. https://doi.org/10.1093/icesjms/fsw021 (2017).

    Article  Google Scholar 

  • 33.

    Ericson, J. A. et al. Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Commun. Biol. 1, 190 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Opstad, I. et al. Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden. Mar. Biol. 165, 116 (2018).

    Article  CAS  Google Scholar 

  • 35.

    Powers, E. B. The physiology of the respiration of fishes relation to the hydrogen ion concentration of the medium. J. Gen. Physiol. 4, 305–317 (1922).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Mayol, E., Ruiz-Halpern, S., Duarte, C. M., Castilla, J. C. & Pelegrí, J. L. Coupled CO2 and O2-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences 9, 1183–1194 (2012).

    ADS  CAS  Article  Google Scholar 

  • 37.

    González, H. E., Ortiz, V. C. & Sobarzo, M. The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23 S), before and during the 1997–1998 El Niño. J. Plankton Res. 22, 499–529 (2000).

    Article  Google Scholar 

  • 38.

    González, H. E. et al. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Progr. Oceanogr. 83, 217–227 (2009).

    ADS  Article  Google Scholar 

  • 39.

    Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep Sea Res. 94, 72–86 (2014).

    Article  Google Scholar 

  • 40.

    Sato, M., Dower, J. F., Kunze, E. & Dewey, R. Second-order seasonal variability in diel vertical migration timing of euphausiids in a coastal inlet. Mar. Ecol. Prog. Ser. 480, 39–56 (2013).

    ADS  Article  Google Scholar 

  • 41.

    Platt, S. A. & Sanislow, C. A. Norm-of-reaction: Definition and misinterpretation of animal research. J. Comp. Psychol. 102, 254–261 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. & Williams, R. L. Zooplankton in the Eastern Tropical North Pacific: Boundary effects of oxygen minimum zone expansion. Deep Sea Res. I 79, 122–140 (2013).

    CAS  Article  Google Scholar 

  • 43.

    Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).

    CAS  Article  Google Scholar 

  • 44.

    Pierrot, D.E., Lewis, E. & Wallace, D.W.R. MS Excel program developed for CO2system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (2006). https://cdiac.ornl.gov/ftp/co2sys.

  • 45.

    Mehrbach, C., Culberson, C., Hawley, J. & Pytkovicz, R. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. 34, 1733–1743 (1987).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12 H 2 (g) 1⁄4 Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO in synthetic seawater from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

    CAS  Article  Google Scholar 

  • 48.

    Mitson, R. B. Underwater noise of research vessels: Review and recommendations. ICES Coop. Res. Rep. 209, 61 (1995).

    Google Scholar 

  • 49.

    Simrad. Simrad ER60 scientific echo sounder manual. Reference Manual. Release 2.2.0, Kongsberg Maritime AS, Norway, 226 (2008).

  • 50.

    Mair, A., Fernandes, P., Lebourges-Dhaussy, A. & Brierley, A. An investigation into the zooplankton composition of a prominent 38-khz scattering layer in the North Sea. J. Plank. Res. 27, 623–633 (2005).

    CAS  Article  Google Scholar 

  • 51.

    Cade, D. E. & Benoit-Bird, K. J. Depths, migration rates and environmental associations of acoustic scattering layers in the Gulf of California. Deep Sea Res. I 102, 78–89 (2015).

    Article  Google Scholar 

  • 52.

    Sato, M. et al. Impacts of moderate hypoxia on fish and zooplankton prey distributions in a coastal fjord. Mar. Ecol. Prog. Ser 560, 57–72 (2016).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Pérez-Santos, I. et al. Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system. Ocean Sci. 14, 1185–1206 (2018).

    ADS  Article  CAS  Google Scholar 

  • 54.

    Díaz-Astudillo, M., Cáceres, M. & Landaeta, M. Zooplankton structure and vertical migration: Using acoustics and biomass to compare stratified and mixed fjord systems. Cont. Shelf Res 148, 208–218 (2017).

    ADS  Article  Google Scholar 

  • 55.

    MacLennan, D. N., Fernandez, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics, ICES. J. Mar. Sci. 59, 365–369 (2002).

    Google Scholar 

  • 56.

    Ballón, M. et al. Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer. Prog. Oceanogr. 91, 360–381 (2011).

    ADS  Article  Google Scholar 

  • 57.

    Clarke, K.R. & Gorley, R.N. PRIMER v7: User Manual/Tutorial PRIMER-E: Plymouth (2015).

  • 58.

    Kloser, R. J., Ryan, T., Sakov, P., Williams, A. & Koslow, J. A. Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59, 1065–1077 (2002).

    Article  Google Scholar 

  • 59.

    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: Seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35, 792–812 (2013).

    CAS  Article  Google Scholar 

  • 60.

    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5(4), e10330 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    McLaskey, A. K. et al. Development of Euphausia pacifica (krill) larvae is impaired under pCO2 levels currently observed in the Northeast Pacific. Mar. Ecol. Prog. Ser. 555, 65–78 (2016).

    ADS  CAS  Article  Google Scholar 

  • 62.

    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).

    ADS  Article  Google Scholar 

  • 63.

    Brewer, P. G. & Peltzer, E. T. Limits to marine life. Science 324, 347–348 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Montgomery, D. W. et al. Rising CO2 enhances hypoxia tolerance in a marine fish. Sci. Rep. 9, 15152 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 65.

    Kiko, R., Hauss, H., Buchholz, F. & Melzner, F. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosciences 13, 2241–2255 (2016).

    ADS  CAS  Article  Google Scholar 

  • 66.

    Antezana, T. Adaptive behaviour of Euphausia mucronata in relation to the oxygen minimum layer of the Humboldt Current. In Oceanography of the Eastern Pacific (ed. J. Farber), vol. 2, 29–40 (2002).

  • 67.

    Torres, J. J. & Childress, J. J. Relationship of oxygen consumption to swimming speed in Euphausia pacifica. Mar. Biol. 74, 79–86 (1983).

    Article  Google Scholar 

  • 68.

    Anderson, M.J., Gorley R.N. & Clarke K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth, UK (2008)

  • 69.

    Hansen, H.P. & Koroleff, F. Determination of nutrients. In Methods sof Seawater Analysis (eds. K. Grasshoff, K. Kremling & M. Ehrhardt) 159–228 https://doi.org/10.1002/9783527613984.ch10 (2007).

  • 70.

    Tremblay, N., Hünerlage, K. & Werner, T. Hypoxia tolerance of 10 Euphausiid species in relation to vertical temperature and oxygen gradients. Front. Physiol. 11, 248. https://doi.org/10.3389/fphys.2020.00248 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 71.

    Tremblay, N., Gómez-Gutiérrez, J., Zenteno-Savín, T., Robinson, C. & Sánchez-Velascoa, L. Role of oxidative stress in seasonal and daily vertical migration of three krill species in the Gulf of California. Limnol. Oceanogr. 55, 2570–2584 (2010).

    ADS  CAS  Article  Google Scholar 

  • 72.

    Herrera, I. et al. Vertical variability of Euphausia distinguenda metabolic rates during diel migration into the oxygen minimum layer of the Eastern Tropical Pacific off Mexico. J. Plankton Res. 41, 165–176 (2019).

    CAS  Article  Google Scholar 

  • 73.

    Hernández-León, S., Calles, S. & Fernández de Puelles, M. L. The estimation of metabolism in the mesopelagic zone: Disentangling deep-sea zooplankton respiration. Progr. Oceanogr. 178, 102163 (2019).

    Article  Google Scholar 

  • 74.

    Hernández-León, S. et al. Carbon export through zooplankton active flux in the Canary Current. J. Mar. Syst. 189, 12–21 (2019).

    Article  Google Scholar 

  • 75.

    Baker, A. de C., Boden, B.P. & Brinton, E. A Practical Guide to the Euphausiids of the World. British Museum (Natural History), London, 96 pp. (1990).

  • 76.

    Alegría, N., Arana, P.M. & Sepúlveda, A. Hydroacoustic survey around Elephant Island (Sub-area 48.1) and South Orkney Islands (Subarea 48.2), austral summer 2016. 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), 5 pp. (2017).

  • 77.

    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).

    Article  Google Scholar 

  • 78.

    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).

    Article  Google Scholar 

  • 79.

    Hewitt, R. P. & Demer, D. A. The use of acoustic sampling to estimate the dispersion and abundance of euphausiids, with an emphasis on Antarctic krill (Euphausia superba). Fish. Res. 47, 215–229 (2000).

    Article  Google Scholar 

  • 80.

    Watkins, J. & Brierley, A. Verification of the acoustic techniques used to identify Antarctic krill. ICES J. Mar. Sci. 59, 1326–1336 (2002).

    Article  Google Scholar 

  • 81.

    Simmonds, E. & MacLennan, D. Observation and measurement of fish. In Fisheries Acoustics: Theory and Practice (ed. Pitcher, T. J.) 163–215 (Blackwell Science, Oxford, UK, 2005).

    Google Scholar 

  • 82.

    Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).

    Article  Google Scholar 

  • 83.

    Santora, J. A. et al. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem. Sci. Rep. 8, 7579 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 84.

    Hartin, C. A., Bond-Lamberty, B., Patel, P. & Mundra, A. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities. Biogeosciences 13, 4329–4342 (2016).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air