in

Plant species determine tidal wetland methane response to sea level rise

  • 1.

    Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B. & Trettin, C. The carbon balance of North American wetlands. Wetlands 26, 889–916 (2006).

    Article  Google Scholar 

  • 2.

    Windham-Myers, L. et al. Tidal wetlands and estuaries. in Second State of the Carbon Cycle Report (eds Cavallaro, N. et al.) 596–648 (U.S. Global Change Research Program, 2018)

  • 3.

    Poulter, B. et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 12, https://doi.org/10.1088/1748-9326/aa8391 (2017).

  • 4.

    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. 12, 1561–1623 (2020).

    ADS  Article  Google Scholar 

  • 5.

    Megonigal, J. P., Hines, M. E. & Visscher, P. T. Anaerobic metabolism: linkages to trace gases and aerobic processes. in Biogeochemistry (ed. Schlesinger, W. H.) 317–424 (Elsevier-Pergamon, 2004).

  • 6.

    Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity influence on methane emissions from tidal marshes. Wetlands 31, 831–842 (2011).

    Article  Google Scholar 

  • 7.

    Al-Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol 26, 2988–3005 (2020).

    ADS  Article  Google Scholar 

  • 8.

    Oreska, M. P. J. et al. The greenhouse gas offset potential from seagrass restoration. Sci. Rep. https://doi.org/10.1038/s41598-020-64094-1 (2020).

  • 9.

    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. https://doi.org/10.1126/sciadv.aao4985 (2018).

  • 10.

    Crooks, S. et al. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory. Nat. Clim. Chang. 8, 1109–1112 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Chang. Biol. 24, 4107–4121 (2018).

    Article  Google Scholar 

  • 12.

    Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225 (2015).

    ADS  CAS  Article  Google Scholar 

  • 13.

    van der Nat, F.-J. W. A. & Middelburg, J. J. Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry 43, 79–104 (1998).

    Article  Google Scholar 

  • 14.

    Mueller, P. et al. Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biol. Invasions 18, 2635–2647 (2016).

    Article  Google Scholar 

  • 15.

    Tong, C., Morris, J. T., Huang, J., Xu, H. & Wan, S. Changes in pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh. Limnol. Oceanogr. 63, 384–396 (2018).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 17.

    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marba, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 21.

    Megonigal, J. P. & Schlesinger, W. H. Enhanced CH4 emissions from a wetland soil exposed to elevated CO2. Biogeochemistry 37, 77–88 (1997).

    CAS  Article  Google Scholar 

  • 22.

    Beaulieu, J. J., DelSontro, T. & Downing, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10, 1375 (2019).

    Article  CAS  Google Scholar 

  • 23.

    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Stocker, B. D. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Chang. 3, 666–672 (2013).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Whiting, G. J. & Chanton, J. P. Primary production control of methane emission from wetlands. Nature 364, 794–795 (1993).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Langley, J. A., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B. & Megonigal, J. P. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob. Chang. Biol. 19, 1495–1503 (2013).

    Article  Google Scholar 

  • 28.

    Mueller, P. et al. Global-change effects on early-stage decomposition processes in tidal wetlands—implications from a global survey using standardized litter. Biogeosciences 15, 3189–3202 (2018).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).

    Article  Google Scholar 

  • 30.

    Redelstein, R., Dinter, T., Hertel, D. & Leuschner, C. Effects of inundation, nutrient availability and plant species diversity on fine root mass and morphology across a saltmarsh flooding gradient. Front. Plant Sci. 9, 1–15 (2018).

    Article  Google Scholar 

  • 31.

    Morris, J. T. Estimating net primary production of salt marsh macrophytes. in Principles and Standards for Measuring Primary Production (eds Fahey, T. J. & Knapp, A. K.) 106–119 (Oxford University Press, 2007).

  • 32.

    Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegetatio. 104, 133–143 (1993).

    Article  Google Scholar 

  • 33.

    Erickson, J. E., Megonigal, J. P., Peresta, G. & Drake, B. G. Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Glob. Chang. Biol. 13, 202–215 (2007).

    ADS  Article  Google Scholar 

  • 34.

    Drake, B. G. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: Review of a 28-year study. Glob. Chang. Biol. 20, 3329–3343 (2014).

    ADS  PubMed  Article  Google Scholar 

  • 35.

    Kirwan, M. L., Langley, J. A., Guntenspergen, G. R. & Megonigal, J. P. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10, 1869–1876 (2013).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).

    PubMed  Article  Google Scholar 

  • 37.

    Phillips, R. P., Bernhardt, E. S. & Schlesinger, W. H. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol. 29, 1513–1523 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Lin, G., Ehleringer, J. R., Rygiewicz, P. T., Johnson, M. G. & Tingey, D. T. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Glob. Chang. Biol. 5, 157–168 (1999).

    ADS  Article  Google Scholar 

  • 39.

    Megonigal, J. P. et al. A plant-soil-atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Sci. Soc. Am. J. 63, 665–671 (1999).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Dacey, J. W. H., Drake, B. G. & Klug, M. J. Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Nature 370, 47–49 (1994).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Keller, J. K., Wolf, A. A., Weisenhorn, P. B., Drake, B. G. & Megonigal, J. P. Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96, 101–117 (2009).

    CAS  Article  Google Scholar 

  • 42.

    Langley, J. A. & Megonigal, J. P. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466, 96–99 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. U.S.A. 106, 6182–6186 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Langley, J. A. et al. Ambient changes exceed treatment effects on plant species abundance in global change experiments. Glob. Chang. Biol. 24, 5668–5679 (2018).

    ADS  PubMed  Article  Google Scholar 

  • 45.

    Bhullar, G. S., Edwards, P. J. & Olde Venterink, H. Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J. Plant Ecol. 6, 298–304 (2013).

    Article  Google Scholar 

  • 46.

    van der Nat, F.-J. W. A., Middelburg, J. J., Van Meteren, D. & Wielemakers, A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry 41, 1–22 (1998).

    Article  Google Scholar 

  • 47.

    Van Der Nat, F. J. W. A. & Middelburg, J. J. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat. Bot. 61, 95–110 (1998).

    Article  Google Scholar 

  • 48.

    Wolf, A. A., Drake, B. G., Erickson, J. E. & Megonigal, J. P. An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Glob. Chang. Biol. 13, 2036–2044 (2007).

    ADS  Article  Google Scholar 

  • 49.

    Bernal, B., Megonigal, J. P. & Mozdzer, T. J. An invasive wetland grass primes deep soil carbon pools. Glob. Chang. Biol. 23, 2104–2116 (2017).

    ADS  PubMed  Article  Google Scholar 

  • 50.

    Mueller, P., Jensen, K. & Megonigal, J. P. Plants mediate soil organic matter decomposition in response to sea level rise. Glob. Chang. Biol. 22, 404–414 (2016).

    ADS  PubMed  Article  Google Scholar 

  • 51.

    Yuan, J. et al. Spartina alterniflora invasion drastically increases methane production potential by shifting methanogenesis from hydrogenotrophic to methylotrophic pathway in a coastal marsh. J. Ecol. 107, 2436–2450 (2019).

    CAS  Article  Google Scholar 

  • 52.

    Marsh, A. S., Rasse, D. P., Drake, B. G. & Megonigal, J. P. Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries 28, 694–704 (2005).

    CAS  Article  Google Scholar 

  • 53.

    Broome, S. W., Mendelssohn, I. A. & McKee, K. L. Relative growth of Spartina patens (Ait.) Muhl. and Scirpus olneyi gray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands 15, 20–30 (1995).

    Article  Google Scholar 

  • 54.

    Mozdzer, T. J., Langley, J. A., Mueller, P. & Megonigal, J. P. Deep rooting and global change facilitate spread of invasive grass. Biol. Invasions 18, 2619–2631 (2016).

    Article  Google Scholar 

  • 55.

    IPCC. United Nations Framework Convention on Climate Change. United Nations Framew. Conv. Clim. Chang. https://doi.org/10.1111/j.1467-9388.1992.tb00046.x (2014).

  • 56.

    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl Acad. Sci. U.S.A. 116, 21623–21628 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Megonigal, J. P. & Rabenhorst, M. Reduction–oxidation potential and oxygen. in Methods in Biogeochemistry of Wetlands (eds DeLaune, R. D., Reddy, K. R., Richardson, C. J. & Megonigal, J. P.) 71–85 (Soil Science Society of America, Inc., 2013).

  • 58.

    Aselmann, I. & Crutzen, P. J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8, 307–358 (1989).

    CAS  Article  Google Scholar 

  • 59.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air