in

The constraint of ignoring the subtidal water climatology in evaluating the changes of coralligenous reefs due to heating events

  • 1.

    Walther, G. R. Community and ecosystem responses to recent climate change. Philos Trans R Soc B Biol Sci 365, 2019–2024 (2010).

    Article  Google Scholar 

  • 2.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change. 3, 919–925 (2013).

    ADS  Article  Google Scholar 

  • 3.

    Hoegh-Guldberg, O. & Poloczanska, E. S. The effect of climate change across ocean regions. Front. Mar. Sci. 4, 361 (2017).

    Article  Google Scholar 

  • 4.

    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change. 8, 499–503 (2018).

    ADS  Article  Google Scholar 

  • 5.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Smale, D. A., Taylor, J. D., Coombs, S. H., Moore, G. & Cunliffe, M. Community responses to seawater warming are conserved across diverse biological groupings and taxonomic resolutions. Proc. R. Soc. B Biol. Sci. 284, 20170534 (2017).

    Article  Google Scholar 

  • 7.

    Gauzens, B., Rall, B. C., Mendonça, V., Vinagre, C. & Brose, U. Biodiversity of intertidal food webs in response to warming across latitudes. Nat. Clim. Change. 10, 264–269 (2020).

    ADS  Article  Google Scholar 

  • 8.

    Sahney, S. & Benton, M. J. Recovery from the most profound mass extinction of all time. Proc. R. Soc. B Biol. Sci. 275, 759–765 (2008).

    Article  Google Scholar 

  • 9.

    Urban, M. C. Accelereting extinction risk from climate change. Science 348, 571–573 (2012).

    ADS  Article  CAS  Google Scholar 

  • 10.

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 12.

    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).

    Article  Google Scholar 

  • 13.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change. 3, 78–82 (2013).

    ADS  Article  Google Scholar 

  • 14.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS  Article  Google Scholar 

  • 16.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).

    Article  Google Scholar 

  • 18.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change. 9, 306–312 (2019).

    ADS  Article  Google Scholar 

  • 19.

    Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).

    ADS  Article  Google Scholar 

  • 22.

    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Glob. Chang. Biol. 21, 1463–1474 (2015).

    ADS  Article  PubMed  Google Scholar 

  • 23.

    Hyndes, G. A. et al. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66, 938–945 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).

    Article  Google Scholar 

  • 25.

    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 15050 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    E.C., MSFD 2008/56/EC of the European Parliament and of the Council, 17 June 2008, establishing a framework for Community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off. J. Eur. Comm. 25/6/2008, L164/19, 22 (2008).

  • 27.

    Martin, C. S. et al. Coralligenous and maërl habitats: Predictive modelling to identify their spatial distributions across the Mediterranean sea. Sci. Rep. 4, 5073 (2015).

    Article  CAS  Google Scholar 

  • 28.

    Ballesteros, E., Avançats, E. & Csic, D. B. Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanogr. Mar. Biol. 44, 123–195 (2006).

    Article  Google Scholar 

  • 29.

    Kružić, P. Bioconstructions in the Mediterranean: present and futture in The Mediterranean sea: its history and present challenges (ed. Goffredo, S. & Dubinsky, Z) 435–447 (2014).

  • 30.

    E.C., Council Directive 92/43/EEC (Habitat Directive) of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Comm. 22/7/1992, L206, 7 (1992).

  • 31.

    Martin, S. & Gattuso, J. P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob. Chang. Biol. 15, 2089–2100 (2009).

    ADS  Article  Google Scholar 

  • 32.

    Boudouresque, C. F. et al.Where seaweed forests meet animal forests: The examples of macroalgae in coral reefs and the Mediterranean coralligenous ecosystem marine animal forests in Marine Animal Forests. Springer, Berlin, pp 1–28 (2016).

  • 33.

    Coma, R., Pola, E., Ribes, M. & Zabala, M. Long-term assessment of temperate octocoral mortality patterns, protected vs. unprotected areas. Ecol. Appl. 14, 1466–1478 (2004).

    Article  Google Scholar 

  • 34.

    Salomidi, M. et al. Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediterr. Mar. Sci. 13, 49–88 (2012).

    Article  Google Scholar 

  • 35.

    Piazzi, L., La Manna, G., Cecchi, E., Serena, F. & Ceccherelli, G. Protection changes the relevancy of scales of variability in coralligenous assemblages. Estuar. Coast. Shelf Sci. 175, 62–69 (2016).

    ADS  Article  Google Scholar 

  • 36.

    Cerrano, C. et al. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol. Lett. 3, 284–293 (2000).

    Article  Google Scholar 

  • 37.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Chang. Biol. 15, 1090–1103 (2009).

    ADS  Article  Google Scholar 

  • 38.

    Gatti, G. et al. Ecological change, sliding baselines and the importance of historical data: Lessons from combing observational and quantitative data on a temperate reef over 70 years. PLoS ONE 10, e0118581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Coma, R. et al. Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar. Ecol. Prog. Ser. 327, 51–60 (2006).

    ADS  Article  Google Scholar 

  • 40.

    Huete-Stauffer, C. et al. Paramuricea clavata (Anthozoa, Octocorallia) loss in the Marine Protected Area of Tavolara (Sardinia, Italy) due to a mass mortality event. Mar. Ecol. 32, 107–116 (2011).

    ADS  Article  Google Scholar 

  • 41.

    Martin, Y., Bonnefont, J. L. & Chancerelle, L. Gorgonians mass mortality during the 1999 late summer in French Mediterranean coastal waters: the bacterial hypothesis. Water Res. 36, 779–782 (2001).

    Article  Google Scholar 

  • 42.

    Crisci, C., Bensoussan, N., Romano, J. C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Torrents, O., Tambutté, E., Caminiti, N. & Garrabou, J. Upper thermal thresholds of shallow vs deep populations of the precious Mediterranean red coral Corallium rubrum (L.): Assessing the potential effects of warming in the NW Mediterranean. J. Exp. Mar. Biol. Ecol. 357, 7–19 (2008).

    Article  Google Scholar 

  • 44.

    Pagès-Escolà, M. et al. Divergent responses to warming of two common co-occurring Mediterranean bryozoans. Sci. Rep. 8, 17455 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecol. Evol. 9, 4168–4180 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Galli, G., Solidoro, C. & Lovato, T. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Front. Mar. Sci. 4, 136 (2017).

    Article  Google Scholar 

  • 47.

    Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Chang. Biol. 24, 4357–4367 (2018).

    ADS  Article  PubMed  Google Scholar 

  • 48.

    Hobday, A. J. et al. Categorizing and naming Marine Heatwaves. Oceanography 31, 162–173 (2018).

    Article  Google Scholar 

  • 49.

    Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello, S. S. & Bansemer, M. S. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 6, 610 (2019).

    Article  Google Scholar 

  • 50.

    Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 387, 27–37 (2009).

    ADS  Article  Google Scholar 

  • 51.

    Bensoussan, N., Romano, J. C., Harmelin, J. G. & Garrabou, J. High resolution characterization of northwest Mediterranean coastal waters thermal regimes: To better understand responses of benthic communities to climate change. Estuar. Coast. Shelf Sci. 87, 431–441 (2010).

    ADS  Article  Google Scholar 

  • 52.

    Bruno, J. F., Carr, L. A. & O’Connor, M. I. Exploring the role of temperature in the ocean through metabolic scaling. Ecology 96, 3126–3140 (2015).

    Article  PubMed  Google Scholar 

  • 53.

    Silbiger, N. J., Goodbody-Gringley, G., Bruno, J. F. & Putnam, H. M. Comparative thermal performance of the reef-building coral Orbicella franksi at its latitudinal range limits. Mar. Biol. 166, 126 (2019).

    Article  Google Scholar 

  • 54.

    Linares, C., Cebrian, E., Kipson, S. & Garrabou, J. Does thermal history influence the tolerance of temperate gorgonians to future warming?. Mar. Environ. Res. 89, 45–52 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Piazzi, L. et al. What’s in an index? Comparing the ecological information provided by two indices to assess the status of coralligenous reefs in the NW Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1091–1100 (2017).

    Article  Google Scholar 

  • 56.

    Ceccherelli G., et al. Vertical gradient and spatial variability of Coralligenous reefs in Sardinia: the interactive effect of depth and location. S.It.E. (Italian Society of Ecology) conference (Ferrara, Italy 10–12 September 2019) https://www.ecologia.it/wp-content/uploads/2019/09/AbstractBook-SItE-Ferrara-2019.pdf, 124 (2019).

  • 57.

    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS ONE 8, e81944 (2013).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Brewin, R. J. W. et al. Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sens. 10, 925 (2018).

    ADS  Article  Google Scholar 

  • 60.

    Coma, R. et al. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. 106, 6176–6181 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 61.

    Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 5911 (2019).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 455 (2019).

    Article  Google Scholar 

  • 63.

    Kim, J. B., Park, J. I., Jung, C. S., Lee, P. Y. & Lee, K. S. Distributional range extension of the seagrass Halophila nipponica into coastal waters off the Korean peninsula. Aquat. Bot. 90, 269–272 (2009).

    Article  Google Scholar 

  • 64.

    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Bio. Ecol. 400, 17–32 (2011).

    Article  Google Scholar 

  • 65.

    Saha, M. et al. Response of foundation macrophytes to near-natural simulated marine heatwaves. Glob. Chang. Biol. 26, 417–430 (2020).

    ADS  Article  PubMed  Google Scholar 

  • 66.

    Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).

    Article  Google Scholar 

  • 67.

    Hartley, S. & Kunin, W. E. Scale Dependency of rarity, extinction risk, and conservation priority. Conserv. Biol. 17, 1559–1570 (2003).

    Article  Google Scholar 

  • 68.

    Bavestrello, G. et al. Mass mortality of Paramuricea clavata (Anthozoa, Cnidaria) on Portofino Promontory cliffs, Ligurian Sea. Mediterranean Sea. Mar. Life 4, 15–19 (1994).

    Google Scholar 

  • 69.

    Ponti, M. et al. Ecological shifts in mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS ONE 9, e102782 (2014).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Lombardi, C., Cocito, S., Occhipinti-Ambrogi, A. & Hiscock, K. The influence of seawater temperature on zooid size and growth rate in Pentapora fascialis (Bryozoa: Cheilostomata). Mar. Biol. 149, 1103–1109 (2006).

    Article  Google Scholar 

  • 71.

    Novosel, M., Požar-Domac, A. & Pasarić, M. Diversity and distribution of the bryozoa along underwater cliffs in the Adriatic sea with special reference to thermal regime. Mar. Ecol. 25, 155–170 (2004).

    ADS  Article  Google Scholar 

  • 72.

    Rindi, F. et al. Coralline algae in a changing Mediterranean Sea: how can we predict their future, if we do not know their present?. Front. Mar. Sci. 6, 2 (2019).

    Article  Google Scholar 

  • 73.

    Crisci, C. et al. Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species. Sci. Rep. 7, 5069 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Piazzi, L. et al. STAR: An integrated and standardized procedure to evaluate the ecological status of coralligenous reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 189–201 (2019).

    Article  Google Scholar 

  • 75.

    Piazzi, L. et al. Integration of ESCA index through the use of sessile invertebrates. Sci. Mar. 81, 283–290 (2017).

    Article  Google Scholar 

  • 76.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009).

    Google Scholar 

  • 77.

    Hastie, T. & Tibshirani, R. Generalized additive models (Taylor and Francis Ltd, New York, 1990).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives LEED Platinum certification

    Benthic ecosystem cascade effects in Antarctica using Bayesian network inference