Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395. https://doi.org/10.1038/416389a (2002).
Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501. https://doi.org/10.1126/science.1196624 (2010).
Carter, S. K., Saenz, D. & Rudolf, V. H. W. Shifts in phenological distributions reshape interaction potential in natural communities. Ecol. Lett. 21, 1143–1151. https://doi.org/10.1111/ele.13081 (2018).
Kahl, S. M., Lenhard, M. & Joshi, J. Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris. J. Ecol. 107, 1918–1930. https://doi.org/10.1111/1365-2745.13133 (2019).
Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074. https://doi.org/10.1126/science.289.5487.2068 (2000).
IPCC. Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty https://www.ipcc.ch/sr15/ (2018).
Wolkovich, et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497. https://doi.org/10.1038/nature11014 (2012).
Ahammed, G. J., Li, X., Wan, H., Zhou, G. & Cheng, Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci. Hortic. 270, 109444. https://doi.org/10.1016/j.scienta.2020.109444 (2020).
Dorji, T. et al. Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agric. Ecosyst. Environ. 291, 106795. https://doi.org/10.1016/j.agee.2019.106795 (2020).
Bertin, R. I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126–146. https://doi.org/10.3159/07-RP-035R.1 (2008).
Lawson, C. R., Vindenes, Y., Bailey, L. & van de Poll, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736. https://doi.org/10.1111/ele.12437 (2015).
Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Nat. Acad. Sci. USA 104, 198–202. https://doi.org/10.1073/pnas.0605642104 (2007).
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008 (2010).
Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52. https://doi.org/10.1038/s41559-018-0745-6 (2019).
Ahammed, G. J., Li, X., Liu, A. & Chen, S. Physiological and defense responses of tea plants to elevated CO2: a review. Front. Plant Sci. 11, 305. https://doi.org/10.3389/fpls.2020.00305 (2020).
Fogelström, E. & Ehrlén, J. Phenotypic but not genotypic selection for earlier flowering in a perennial herb. J. Ecol. 107, 2650–2659. https://doi.org/10.1111/1365-2745.13240 (2019).
Badeck, F. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x (2004).
Ehrlén, J., Raabova, J. & Dahlgren, J. P. Flowering schedule in a perennial plant: life-history trade-offs, seed predation, and total offspring fitness. Ecology 96, 2280–2288. https://doi.org/10.1890/14-1860.1 (2015).
Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462. https://doi.org/10.1126/science.1186473 (2010).
Gerst, K. L., Rossington, N. L. & Mazer, S. J. Phenological responsiveness to climate differs among four species of Quercus in North America. J. Ecol. 105, 1610–1622. https://doi.org/10.1111/1365-2745.12774 (2017).
Grossiord, C. et al. Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems. J. Ecol. 105, 163–175. https://doi.org/10.1111/1365-2745.12662 (2017).
Crimmins, T. M., Crimmins, M. A. & Bertelsen, C. D. Onset of summer flowering in a ‘Sky Island’ is driven by monsoon moisture. New Phytol. 191, 468–479. https://doi.org/10.1111/j.1469-8137.2011.03705.x (2011).
Meng, F. D. et al. Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology 98, 734–740. https://doi.org/10.1002/ecy.1685 (2017).
Dunne, J. A., Harte, J. & Taylor, K. J. Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol. Monogr. 73, 69–86. https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2 (2003).
Gugger, S., Kesselring, H., Stöcklin, J. & Hamann, E. Lower plasticity exhibited by high- versus mid- elevation species in their phenological responses to manipulated temperature and drought. Annu. Bot. 116, 953–962. https://doi.org/10.1093/aob/mcv155 (2015).
Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371. https://doi.org/10.1038/s41586-018-0399-1 (2018).
Fenner, M. The phenology of growth and reproduction in plants. Perspect. Plant Ecol. 1, 78–91. https://doi.org/10.1078/1433-8319-00053 (1998).
Lee, H. & Kang, H. Temperature-driven changes of pollinator assemblage and activity of Megaleranthis saniculifolia (Ranunculaceae) at high altitudes on Mt. Sobaeksan, South Korea. J. Ecol. Environ. 42, 31. https://doi.org/10.1186/s41610-018-0092-1 (2018).
Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Nat. Acad. Sci. USA 107, 22151–22156. https://doi.org/10.1073/pnas.1012490107 (2010).
Cook, B. I., Wolkovich, E. M. & Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Nat. Acad. Sci. USA 109, 9000–9005. https://doi.org/10.1073/pnas.1118364109 (2012).
Meier, A. J., Bratton, S. P. & Duffy, D. C. Possible ecological mechanisms for loss of vernal-herb diversity in logged eastern deciduous forests. Ecol. Appl. 5, 935–946. https://doi.org/10.2307/2269344 (1995).
Sung, J. et al. Growth environment and vegetation structure of native habitat of Corydalis cornupetala. Korean J. Environ. Ecol. 27, 271–279 (2013).
Augspurger, C. K. & Salk, C. F. Constraints of cold and shade on the phenology of spring ephemeral herb species. J. Ecol. 105, 246–254. https://doi.org/10.1111/1365-2745.12651 (2017).
Rizhsky, L. et al. When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696. https://doi.org/10.1104/pp.103.033431 (2004).
Su, Z. et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute response of long-term acclimation in Arabidopsis. Plant Cell 25, 3785–3807. https://doi.org/10.1105/tpc.113.115428 (2013).
Vallales, F., Wright, S. J., Lasso, E., Kitajima, K. & Pearcy, R. W. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81, 1925–1936. https://doi.org/10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2 (2000).
Valladares, F., Sanchez-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x (2006).
CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Nat. Acad. Sci. USA 111, 13. https://doi.org/10.1073/pnas.1323073111 (2014).
Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. Biol. Sci. 365, 3101–3112. https://doi.org/10.1098/rstb.2010.0145 (2010).
Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012 (2013).
Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 29, 290–300. https://doi.org/10.1093/jxb/10.2.290 (1959).
Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x (2008).
Limousin, J.-M. et al. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169, 565–577. https://doi.org/10.1007/s00442-011-2221-8 (2012).
Li, X. et al. Exogeneous melatonin improves tea quality under moderate high temperatures by increasing epigallacatechin-3-gallate and theanine biosynthesis in Camellia sinensis L. J. Plant Physiol. 253, 153273. https://doi.org/10.1016/j.jplph.2020.153273 (2020).
Wheeler, J. A. et al. The snow and the willows: earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J. Ecol. 104, 1041–1050. https://doi.org/10.1111/1365-2745.12579 (2016).
Llorens, L. & Peñuelas, J. Experimental evidence of future drier and warmer conditions affecting flowering of two co-occurring Mediterranean shrubs. Int. J. Plant Sci. 166, 235–245. https://doi.org/10.1086/427480 (2005).
Bernal, M., Estiarte, M. & Penuelas, J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol. 13, 252–257. https://doi.org/10.1111/j.1438-8677.2010.00358.x (2011).
Shavrukov, Y. et al. Early flowering as a drought escape mechanism in plants: how can it aid wheat production?. Front. Plant Sci. 8, 1950. https://doi.org/10.3389/fpls.2017.01950 (2017).
Sherry, R. A. et al. Changes in duration of reproductive phases and lagged phenological response to experimental climate warming. Plant Ecol. Divers. 4, 23–35. https://doi.org/10.1080/17550874.2011.557669 (2011).
Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agric. Crop Sci. 197(430–441), 2011. https://doi.org/10.1111/j.1439-037X.2011.00477.x (2011).
Zong, J.-M. et al. The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int. J. Mol. Sci. 17, 611. https://doi.org/10.3390/ijms17040611 (2016).
Żuraw, B., Rysiak, K. & Szymczak, G. Ecology and morphology of the flowers of Hepatica nobilisSchreb. (Ranunculaceae). Mod. Phytomorphol. 4, 39–43. https://doi.org/10.5281/zenodo.161177 (2013).
Kalliovirta, M., Ryttäri, T. & Heikkinen, R. K. Population structure of a threatened plant, Pulsatilla patens, in boreal forests: modeling relationships to overgrowth and site closure. Biodivers. Conserv. 15, 3095–3108. https://doi.org/10.1007/s10531-005-5403-z (2006).
Inghe, O. & Tamm, C. O. Survival and flowering of perennial herbs. IV. The behavior of Hepatica nobilis and Sanicula europaea on permanent plots during 1943–1981. Oikos 45, 400–420. https://doi.org/10.2307/3565576 (1985).
Lee, T. B. Colored Flora of Korea (Hyangmunsa, Seoul, 2003).
Kang, H. & Jang, S. Flowering patterns among angiosperm species in Korea: diversity and constraints. J. Plant Biol. 47, 348–355. https://doi.org/10.1007/BF03030550 (2004).
Culley, T. M. Reproductive biology and delayed selfing in Viola pubscens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. Int. J. Plant Sci. 163, 113–122. https://doi.org/10.1086/324180 (2002).
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, https://www.R-project.org (2017).
Source: Ecology - nature.com