in

Smaller climatic niche shifts in invasive than non-invasive alien ant species

  • 1.

    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 1–9 (2016).

  • 2.

    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).

    ADS  PubMed  Article  Google Scholar 

  • 4.

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    PubMed  Article  Google Scholar 

  • 5.

    Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).

    Article  Google Scholar 

  • 6.

    Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 13, 947–958 (2010).

    PubMed  Google Scholar 

  • 7.

    Enserink, M. Biological invaders sweep in. Science 285, 1834–1836 (1999).

    CAS  Article  Google Scholar 

  • 8.

    Hulme, P. E. Phenotypic plasticity and plant invasions: is it all Jack? Funct. Ecol. 22, 3–7 (2008).

    Article  Google Scholar 

  • 9.

    Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310 (2002).

    Article  Google Scholar 

  • 10.

    Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14, 419–431 (2011).

    PubMed  Article  Google Scholar 

  • 11.

    Bazin, É., Mathé-Hubert, H., Facon, B., Carlier, J. & Ravigné, V. The effect of mating system on invasiveness: Some genetic load may be advantageous when invading new environments. Biol. Invasion. 16, 875–886 (2014).

    Article  Google Scholar 

  • 12.

    Zheng, Y. et al. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors. Sci. Rep. 5, 1–8 (2015).

    Google Scholar 

  • 13.

    Callaway, R. M. & Aschehoug, E. T. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290, 521–523 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).

    PubMed  Article  Google Scholar 

  • 15.

    Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010).

    Article  Google Scholar 

  • 16.

    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).

    Article  Google Scholar 

  • 18.

    Hölldobler, Bert, E. O. W. The Ants. (Havard University Press, 1990).

  • 19.

    Meurisse, N., Rassati, D., Hurley, B. P., Brockerhoff, E. G. & Haack, R. A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 92, 13–27 (2018).

    Article  Google Scholar 

  • 20.

    Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).

    Article  Google Scholar 

  • 21.

    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).

    Article  Google Scholar 

  • 22.

    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).

  • 23.

    Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    PubMed  Article  Google Scholar 

  • 25.

    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Rouget, M. et al. Invasion debt-quantifying future biological invasions. Divers. Distrib. 22, 445–456 (2016).

    Article  Google Scholar 

  • 27.

    Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional Areas. Biodivers. Inform. 2, 0–10 (2005).

    Article  Google Scholar 

  • 28.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).

    Article  Google Scholar 

  • 29.

    Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 163, 170–176 (2002).

    Article  Google Scholar 

  • 30.

    Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).

    Article  Google Scholar 

  • 31.

    Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B Biol. Sci. 277, 1789–1797 (2010).

    Article  Google Scholar 

  • 32.

    Torres, U. et al. Using niche conservatism information to prioritize hotspots of invasion by non-native freshwater invertebrates in New Zealand. Divers. Distrib. 24, 1802–1815 (2018).

    Article  Google Scholar 

  • 33.

    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).

    Article  Google Scholar 

  • 34.

    Godefroid, M., Rasplus, J. Y. & Rossi, J. P. Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus. Ecography 39, 1197–1209 (2016).

    Article  Google Scholar 

  • 35.

    Bujan, J., Roeder, K. A., Yanoviak, S. P. & Kaspari, M. Seasonal plasticity of thermal tolerance in ants. Ecology 101, 1–6 (2020).

    Article  Google Scholar 

  • 36.

    Bujan, J. & Kaspari, M. Nutrition modifies critical thermal maximum of a dominant canopy ant. J. Insect Physiol. 102, 1–6 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Alexander, J. M. & Edwards, P. J. Limits to the niche and range margins of alien species. Oikos 119, 1377–1386 (2010).

    Article  Google Scholar 

  • 38.

    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).

    PubMed  Article  Google Scholar 

  • 39.

    Tingley, R., Vallinoto, M., Sequeira, F. & Kearney, M. R. Realized niche shift during a global biological invasion. Proc. Natl Acad. Sci. USA 111, 10233–10238 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    Medley, K. A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob. Ecol. Biogeogr. 19, 122–133 (2010).

    Article  Google Scholar 

  • 41.

    Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 42.

    Angetter, L. S., Lotters, S. & Rodder, D. Climate niche shift in invasive species: the case of the brown anole. Biol. J. Linn. Soc. 104, 943–954 (2011).

    Article  Google Scholar 

  • 43.

    Colautti, R. I. & Lau, J. A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24, 1999–2017 (2015).

    PubMed  Article  Google Scholar 

  • 44.

    Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).

    PubMed  Article  Google Scholar 

  • 45.

    Srivastava, V., Lafond, V. & Griess, V. C. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev. 14, 1–13 (2019).

  • 46.

    Pili, A. N., Tingley, R., Sy, E. Y., Diesmos, M. L. L. & Diesmos, A. C. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci. Rep. 10, 1–18 (2020).

    Article  CAS  Google Scholar 

  • 47.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Kirchhof, S. et al. Thermoregulatory behavior and high thermal preference buffer impact of climate change in a Namib Desert lizard. Ecosphere 8, e02033 (2017).

  • 49.

    Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).

    PubMed  Article  Google Scholar 

  • 50.

    Chapman, D. S., Scalone, R., Štefanić, E. & Bullock, J. M. Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology 98, 1671–1680 (2017).

    PubMed  Article  Google Scholar 

  • 51.

    Janicki, J., Narula, N., Ziegler, M., Guénard, B. & Economo, E. P. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecol. Inform. 32, 185–193 (2016).

    Article  Google Scholar 

  • 52.

    Guénard, B., Weiser, M. D., Gómez, K., Narula, N. & Economo, E. P. The Global Ant Biodiversity Informatics (GABI) database: Synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecological N. 24, 83–89 (2017).

    Google Scholar 

  • 53.

    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).

    Article  Google Scholar 

  • 54.

    Pagad, S., Genovesi, P., Carnevali, L., Scalera, R. & Clout, M. IUCN SSC invasive species specialist group: Invasive alien species information management supporting practitioners, policy makers and decision takers. Manag. Biol. Invasion. 6, 127–135 (2015).

    Article  Google Scholar 

  • 55.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 56.

    Dray, S. & Dufour, A.-B. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

  • 57.

    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Article  Google Scholar 

  • 58.

    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    Article  Google Scholar 

  • 59.

    Schoener, T. W. The Anolis Lizards of Bimini: resource partitioning in a complex fauna were invaded by anoline lizards. Ecol. Soc. Am. 49, 704–726 (1968).

    Google Scholar 

  • 60.

    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    PubMed  Article  Google Scholar 

  • 61.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 62.

    Bates, O. K., Ollier, S. & Bertelsmeier, C. Smaller climatic niche shifts in invasive than non-invasive alien ant species. GitHub. https://doi.org/10.5281/zenodo.4041296 (2020).

  • 63.

    Team, R. C. R.: A Language and Environment for Statistical Computing. (2019).


  • Source: Ecology - nature.com

    MIT.nano receives LEED Platinum certification

    Benthic ecosystem cascade effects in Antarctica using Bayesian network inference