in

Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation

  • 1.

    Trathan, P. N. & Hill, S. L. in Biology and Ecology of Antarctic krill (ed. Siegel, V.) 321–350 (Springer, 2016).

  • 2.

    Atkinson, A. et al. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Pt. 1. 56, 727–740 (2009).

    Article  Google Scholar 

  • 3.

    Bar-On, Y. N., Philips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  Article  Google Scholar 

  • 4.

    Atkinson, A. et al. Sardine cycles, krill declines, and locust plagues: revisiting ‘wasp-waist’ food webs. Trends Ecol. Evol. 29, 309–316 (2014).

    Article  Google Scholar 

  • 5.

    Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).

    CAS  Article  Google Scholar 

  • 6.

    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish. Fish 11, 203–209 (2010).

    Article  Google Scholar 

  • 7.

    Schmidt, K. et al. Zooplankton gut passage mobilizes lithogenic iron for ocean productivity. Curr. Biol. 26, 2667–2673 (2016).

    CAS  Article  Google Scholar 

  • 8.

    Nicol, S. & Foster, J. in Biology and Ecology of Antarctic krill 387–421 (Springer, 2016).

  • 9.

    Kawaguchi, S & Nicol, S. in Fisheries and Aquaculture Vol. 9. (eds Lovrich, G. & Thiel, M.) 137–158, https://doi.org/10.1093/oso/9780190865627.003.0006. (Oxford University Press, 2020).

  • 10.

    Turner, J. & Overland, J. Contrasting climate change in the two polar regions. Polar Res. 26, 146–164 (2009).

    Article  Google Scholar 

  • 11.

    Rogers, A. D. et al. Antarctic futures: an assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the southern ocean. Annul Rev. Mar. Sci 12, 87–120 (2019).

    Article  Google Scholar 

  • 12.

    Kawaguchi, S., Nicol, S. & Press, A. J. Direct effects of climate change on the Antarctic krill fishery. Fisheries Manag. Ecol. 16, 424–427 (2009).

    Article  Google Scholar 

  • 13.

    Trathan, P. N. et al. Krill biomass in the Atlantic. Nature 367, 201–202 (1995).

    Article  Google Scholar 

  • 14.

    Constable, A. J. & de la Mare, W. K. A generalised yield model for evaluating the yield and the long-term status of fish stocks under conditions of uncertainty. CCAMLR Sci. 3, 31–54 (1996).

    Google Scholar 

  • 15.

    Hill, S. L. et al. Is current management of the Antarctic krill fishery in the Atlantic sector of the Southern Ocean precautionary? CCAMLR Sci. 23, 31–51 (2016).

    Google Scholar 

  • 16.

    Hewitt, R. P. et al. Options for allocating the precautionary catch limit of krill among small-scale management units in the Scotia Sea. CCAMLR Sci 11, 81–97 (2004).

    Google Scholar 

  • 17.

    Watters, G. M., Hill, S. L., Hinke, J. T., Matthews, J. & Reid, K. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model. Ecol. Appl. 23, 710–725 (2013).

    CAS  Article  Google Scholar 

  • 18.

    Trathan, P. N. et al. Managing fishery development in sensitive ecosystems: identifying penguin habitat use to direct management in Antarctica. Ecosphere 9, e02392 (2018).

    Article  Google Scholar 

  • 19.

    Watters, G. M., Hinke, J. T. & Reiss, C. Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator-prey interaction lead to erroneous conclusions about precaution. Sci. Rep. 10, 2314 (2020).

    CAS  Article  Google Scholar 

  • 20.

    Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).

    Article  Google Scholar 

  • 21.

    Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588 (2014).

    Article  Google Scholar 

  • 22.

    Brierley, A. S. & Reid, K. Krill and the diversity of science and society: An introduction to the Third International Symposium on Krill. J. Crust. Biol. 38, 651–655 (2018).

    Google Scholar 

  • 23.

    Report of the Thirty-Sixth Meeting of the Scientific Committee of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR, Hobart, Australia, 2017).

  • 24.

    SC-CCAMLR Report of the thirty-eight Meeting of the Scientific Committee, of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR Hobart, Australia, 2019).

  • 25.

    Spiridonov, V. Spatial and temporal variability in reproductive timing of Antarctic krill (Euphausia superba Dana). Polar Biol. 15, 161–174 (1995).

    Article  Google Scholar 

  • 26.

    Siegel, V. Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol. 29, 1–22 (2005).

    Article  Google Scholar 

  • 27.

    Schmidt, K., Atkinson, A., Venables, H. & Pond, D. W. Early spawning of Antarctic krill in the Scotia Sea is fueled by ‘superfluous’ feeding on non-ice associated phytoplankton blooms. Deep Sea Res. II 59, 159–172 (2012).

    Article  Google Scholar 

  • 28.

    Ross, R. B. & Quetin, L. B. Energetic cost to develop to the first feeding stage of Euphausia superba Dana and the effect of delays in food availability. J. Exp. Mar. Biol. Ecol. 133, 103–127 (1989).

    Article  Google Scholar 

  • 29.

    Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol 1, 1853–1861 (2017).

    Article  Google Scholar 

  • 30.

    Brierley, A. S., Demer, D. A., Hewitt, R. P. & Watkins, J. L. Concordance of inter-annual fluctuations in densities of krill around South Georgia and Elephant Islands: biological evidence of same year teleconnections across the Scotia Sea. Mar. Biol. 134, 675–681 (1999).

    Article  Google Scholar 

  • 31.

    Reiss, C. S. in Biology and Ecology of Antarctic krill 101–144 (Springer, 2016).

  • 32.

    Quetin, L. B., Ross, R. M., Fritsen, C. H. & Vernet, M. Ecological responses of Antarctic krill to environmental variability: can we predict the future? Ant. Sci. 19, 253–266 (2007).

    Article  Google Scholar 

  • 33.

    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).

    CAS  Article  Google Scholar 

  • 34.

    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centered food web. Phil. Trans. R. Soc. B 362, 113–148 (2007).

    CAS  Article  Google Scholar 

  • 35.

    Kinzey, D. et al. Selectivity and two biomass measures in an age-based assessment of Antarctic krill (Euphausia superba). Fish. Res. 168, 72–84 (2015).

    Article  Google Scholar 

  • 36.

    Siegel, V. & Loeb, V. et al. Recruitment of Antarctic krill (Euphausia superba) and possible causes for its variability. Mar. Ecol. Prog. Ser. 123, 45–56 (1995).

    Article  Google Scholar 

  • 37.

    Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Oceanogr. 134, 93–122 (2015).

    Article  Google Scholar 

  • 38.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).

    Article  Google Scholar 

  • 39.

    Thorpe, S. E., Tarling, G. A. & Murphy, E. J. Circumpolar patterns in Antarctic krill larval recruitment: an environmentally driven model. Mar. Ecol. Prog. Ser. 613, 77–96 (2019).

    Article  Google Scholar 

  • 40.

    Ryabov, A. B. et al. Competition-induced starvation drives large-scale population cycles in Antarctic krill. Nat. Ecol. Evol 1, 1–8 (2017).

    Article  Google Scholar 

  • 41.

    Makarov, R. R. & Menshenina, L. L. On the distribution of euphausiid larvae in the Antarctic waters. Okeanologija Akademija Nauk SSSR. Okeanograficeskaja Komissija, Moskva 29, 825–831 (1989).

    Google Scholar 

  • 42.

    Perry, F. A. et al. Habitat partitioning in Antarctic krill: spawning hotspots and nursery areas. PLoS ONE 14, e0219325 (2019).

    CAS  Article  Google Scholar 

  • 43.

    Siegel, V & Watkins, J. N. in Biology and Ecology of Antarctic krill 21–100 (Springer, 2016).

  • 44.

    Hofmann, E. E. & Hüsrevoğlu, Y. S. A circumpolar modelling study of habitat control of Antarctic krill (Euphausia superba) reproductive success. Deep-Sea Res II 50, 3121–3142 (2003).

    Article  Google Scholar 

  • 45.

    King, M. Fisheries Biology, Assessment and Management 341 (Fishing News Books, Blackwell Science, Oxford, 1995).

  • 46.

    Rombolá, E. R. et al. Variability of euphausiid larvae densities during the 2011, 2012, and 2014 summer seasons in the Atlantic sector of the Antarctic. Polar Sci. 19, 86–93 (2019).

    Article  Google Scholar 

  • 47.

    Conroy, J. A., Reiss, C. S., Gleiber, M. R. & Steinberg, D. K. Linking Antarctic krill larval supply and recruitment along the Antarctic Peninsula. Integr. Comp. Biol. https://doi.org/10.1093/icb/icaa111 (2020).

    Article  Google Scholar 

  • 48.

    Siegel, V. et al. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. I 77, 63–74 (2013).

    Article  Google Scholar 

  • 49.

    Lumpkin, R. & Centurioni, L. Global Drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys. NOAA National Centers for Environmental Information. Dataset. https://doi.org/10.25921/7ntx-z961 (2019)

  • 50.

    Siegel, V. in Antarctic Ocean and Resources Variability 219–230 (Springer, 1988).

  • 51.

    Trathan, P. N. et al. Spatial variability of Antarctic krill in relation to mesoscale hydrography. Mar. Ecol. Prog. Ser. 98, 61–71 (1993).

    Article  Google Scholar 

  • 52.

    Jazdzewski, K. et al. Biological and populational studies on krill near South Shetland Islands, Scotia Sea and South Georgia in the summer 1976. Polskie Archiwum Hydrobiologii 25, 607–631 (1978).

    Google Scholar 

  • 53.

    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).

    CAS  Article  Google Scholar 

  • 54.

    Piñones, A. et al. Modeling the remote and local connectivity of Antarctic krill populations along the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 481, 69–92 (2013).

    Article  Google Scholar 

  • 55.

    Taki, K., Hayashi, T. & Naganobu, M. Characteristics of seasonal variation in diurnal vertical migration and aggregation of Antarctic krill (Euphausia superba) in the Scotia Sea, using Japanese fishery data. CCAMLR Sci. 12, 163–172 (2005).

    Google Scholar 

  • 56.

    Barlow, K. E. et al. Are penguins and seals in competition for Antarctic krill at South Georgia? Mar. Biol. 140, 205–213 (2002).

    Article  Google Scholar 

  • 57.

    Reid, K., Trathan, P. N., Croxall, J. P. & Hill, H. J. Krill caught by predators and nets: differences between species and techniques. Mar. Ecol. Prog. Ser. 140, 13–20 (1996).

    Article  Google Scholar 

  • 58.

    Jackson, J. A. et al. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc. Roy. Soc. B-Biol. Sci 281, 20133222 (2014).

    Article  Google Scholar 

  • 59.

    Herr, H. et al. Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey. Polar Biol. 39, 799–818 (2016).

    Article  Google Scholar 

  • 60.

    Viquerat, S. & Herr, H. Mid-summer abundance estimates of fin whales Balaenoptera physalus around the South Orkney Islands and Elephant Island. ESR 32, 515–524 (2017).

    Article  Google Scholar 

  • 61.

    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator form historical exploitation. Roy. Soc. Open Sci 6, 190368 (2019).

    Article  Google Scholar 

  • 62.

    Reid, K. et al. Widening the net: spatio-temporal variability in the krill population structure across the Scotia Sea. Deep-Sea Res. II 51, 1275–1287 (2004).

    Article  Google Scholar 

  • 63.

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    CAS  Article  Google Scholar 

  • 64.

    Hill, S. L., Trathan, P. H. & Agnew, D. J. The risk to fishery performance associated with spatially resolved management of Antarctic krill (Euphausia superba) harvesting. ICES J. Mar. Sci 66, 2148–2154 (2009).

    Article  Google Scholar 

  • 65.

    Tarling, G. A., Ward, P. & Thorpe, S. E. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming. Global Change Biol. https://doi.org/10.1111/gcb.13834 (2017).

  • 66.

    Stammerjohn, S. S., Massom, R. A., Rind, D. & Martinson, D. G. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, L06501 (2012).

    Article  Google Scholar 

  • 67.

    Henley, S. F. et al. Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2019.03.003 (2019).

  • 68.

    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature. 535, 411–415 (2016).

    CAS  Article  Google Scholar 

  • 69.

    Swart, N. C. & Fyfe, J. C. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Letters 39, L16711 (2012).

    Article  Google Scholar 

  • 70.

    Datwyler, C. et al. Teleconnection stationality, variability and trends of the Southern Annular Mode (SAM) during the last millennium. Clim. Dyn. 51, 2321–2339 (2017).

    Article  Google Scholar 

  • 71.

    Stammerjohn, S. E. et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 113, C03S90 (2008).

    Article  Google Scholar 

  • 72.

    SC-CCAMLR Report of the twenty-ninth Meeting of the Scientific Committee, of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR Hobart, Australia, 2010).

  • 73.

    Cox, M. J. et al. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crust. Biol. 38, 656–661 (2018).

    Google Scholar 

  • 74.

    Loeb, V. et al. Effects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).

    CAS  Article  Google Scholar 

  • 75.

    Trivelpiece, W. Z. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc. Natl Acad. Sci. USA 108, 7625–7628 (2011).

    CAS  Article  Google Scholar 

  • 76.

    Huang, T. et al. Relative changes in krill abundanceiInferred from Antarctic Fur Seal. PLoS ONE 6, e27331 (2011).

    CAS  Article  Google Scholar 

  • 77.

    Atkinson, A., Siegel, V., Pakhomov, E. A. & Rothery, P. Long term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    CAS  Article  Google Scholar 

  • 78.

    Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).

    CAS  Article  Google Scholar 

  • 79.

    McMahon, K. W. et al. Divergent trophic responses of sympatric penguin species to historic anthropogenic exploitation and recent climate change. Proc. Natl Acad Sci. USA 116, 25721–25727 (2019).

    CAS  Article  Google Scholar 

  • 80.

    Hill, S. L., Atkinson, A., Pakhomov, E. A. & Siegel, V. Evidence for a decline in the population density of Antarctic krill Euphausia superba Dana 1850, still stands: A comment on Cox et al. J. Crust. Biol 39, 316–322 (2019).

    Article  Google Scholar 

  • 81.

    Cox, M. J. et al. Clarifying trends in the density of Antarctic krill Euphausia superba Dana, 1850 in the South Atlantic. A response to Hill et al. J. Crust. Biol. 39, 323–327 (2019).

    Article  Google Scholar 

  • 82.

    Hill, S. L. et al. Reference points for predators will progress ecosystem‐based management of fisheries. Fish. Fish. 21, 368–378 (2020).

    Article  Google Scholar 

  • 83.

    Fuentes, V. et al. Glacial melting: an overlooked threat to Antarctic krill. Sci. Reps 6, 27234 (2016).

    CAS  Article  Google Scholar 

  • 84.

    Flores et al. The response of Antarctic krill to climate change: Implications for management and research priorities. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).

    Article  Google Scholar 

  • 85.

    Ross, R. M. et al. Palmer LTER: Patterns of distribution of five dominant zooplankton species in the epipelagic zone west of the Antarctic Peninsula, 1993–2004. Deep Sea Res. II 55, 2086–2105 (2008).

    Article  Google Scholar 

  • 86.

    Loeb, V. J. et al. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Ant. Sci. 21, 135–148 (2009).

    Article  Google Scholar 

  • 87.

    Beaugrand, G. & Kirby, R. R. How do marine pelagic species respond to climate change? Theories and observations. Annu. Rev. Mar. Sci. 10, 169–197 (2018).

    Article  Google Scholar 

  • 88.

    Tarling, G. A. & Thorpe, S. E. Oceanic swarms of Antarctic krill perform satiation sinking. Proc. R. Soc. B 284, 20172015 (2017).

    Article  CAS  Google Scholar 

  • 89.

    Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell Quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).

    CAS  Article  Google Scholar 

  • 90.

    Piñones, A. & Fedorov, A. V. Projected changes of Antarctic krill habitat by the end of the 21st century. Geophys. Res. Lett. 43, 8580–8589 (2016).

    Article  Google Scholar 

  • 91.

    Murphy, E. J. et al. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Reps 7, 6963 (2017).

    Article  CAS  Google Scholar 

  • 92.

    Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).

    Article  Google Scholar 

  • 93.

    Kawaguchi, S. et al. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Change 3, 343–347 (2013).

    Article  CAS  Google Scholar 

  • 94.

    Kawaguchi, S. & Nicol, S. Learning about Antarctic krill from the fishery. Ant. Sci. 19, 219–230 (2007).

    Article  Google Scholar 

  • 95.

    Warner, A. J., Hays, G. C. & Hays, G. Sampling by the Continuous Plankton Recorder survey. Prog. Oceanogr. 34, 237–256 (1994).

    Article  Google Scholar 

  • 96.

    Petersen, W. FerryBox systems: State-of-the-art in Europe and future development. J. Mar. Syst. 140 A, 4–12 (2014).

    Article  Google Scholar 

  • 97.

    Brierley, A. S. et al. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol. Oceanogr.: Methods 4, 18–29 (2006).

    Article  Google Scholar 

  • 98.

    Guihen, D. et al. An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: the distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea. Limnol. Oceanogr.: Methods 12, 373–389 (2014).

    Article  Google Scholar 

  • 99.

    Meinig, C. et al. Public private partnerships to advance regional ocean observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci. 6, 448 (2019).

    Article  Google Scholar 

  • 100.

    Park, Y. H. & Durand, I. Altimetry-derived Antarctic circumpolar current fronts. SEANOE. https://doi.org/10.17882/59800 (2019).

  • 101.

    Park, Y.-H. et al. Observations of the Antarctic Circumpolar Current over the Udintsev Fracture Zone, the narrowest choke point in the Southern Ocean. J. Geophys. Res.: Oceans. 124 https://doi.org/10.1029/2019JC015024 (2019)

  • 102.

    Ikeda, T. Development of the larvae of the Antarctic krill (Euphausia superba Dana) observed in the laboratory. J. Exp. Mar. Biol. Ecol. 75, 107–117 (1984).

    Article  Google Scholar 

  • 103.

    Tarling, G. A. et al. Growth and shrinkage in Antarctic krill Euphausia superba is sex-dependent. Mar. Ecol. Prog. Ser. 547, 61–78 (2016).

    Article  Google Scholar 

  • 104.

    Guinet, C. et al. Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags. Earth Syst. Sci. Data 5, 15–29 (2013).

    Article  Google Scholar 

  • 105.

    Thiebot, J-B et al. Jellyfish and other gelata as food for four penguin species—insights from predator-borne videos. Front. Ecol. Environ. https://doi.org/10.1002/fee.1529 (2017).

  • 106.

    Watanabe, Y. Y. & Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc Natl Acad. Sci. USA 10, 2199–2204 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives LEED Platinum certification

    Benthic ecosystem cascade effects in Antarctica using Bayesian network inference