in

First use of artificial canopy bridge by the world’s most critically endangered primate the Hainan gibbon Nomascus hainanus

  • 1.

    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5, 18–32. https://doi.org/10.1002/ajp.23076 (1991).

    Article  Google Scholar 

  • 2.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).

    Article  Google Scholar 

  • 3.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10. https://doi.org/10.1126/sciadv.1500052 (2015).

    Article  Google Scholar 

  • 4.

    Alamgir, M. et al. High-risk infrastructure projects pose imminent threats to forests in Indonesian Borneo. Sci. Rep. 9(140), 1–10. https://doi.org/10.1038/s41598-018-36594-8 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, 1–10. https://doi.org/10.1126/sciadv.aax8574 (2020).

    Article  Google Scholar 

  • 6.

    Onderdonk, D. A. & Chapman, C. A. Coping with forest fragmentation: the primates of Kibale National Park, Uganda. Int. J. Primatol. 21, 587–611. https://doi.org/10.1023/A:1005509119693 (2000).

    Article  Google Scholar 

  • 7.

    Das, J., Biswas, J., Bhattacherjee, P. C. & Rao, S. S. Canopy bridges: an effective conservation tactic for supporting gibbon populations in forest fragments. Gibbons 1, 467–475. https://doi.org/10.1007/978-0-387-88604-6 (2009).

    Article  Google Scholar 

  • 8.

    Taylor, A. C., Walker, F. M., Goldingay, R. L., Ball, T. & van der Ree, R. Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal. PLoS ONE 6, 1–9. https://doi.org/10.1371/journal.pone.0026651 (2011).

    CAS  Article  Google Scholar 

  • 9.

    Sarma, K., Kumar, A., MuraliKrishna, C., Tripathi, O. P. & Gajurel, P. R. Ground feeding observations on corn (Zea mays) by eastern hoolock gibbon (Hoolock leuconedys). Curr. Sci. 104, 587–589 (2013).

    Google Scholar 

  • 10.

    Chapman, C. A. et al. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534. https://doi.org/10.1002/ajpa.20477 (2006).

    Article  PubMed  Google Scholar 

  • 11.

    Donaldson, A. & Cunneyworth, P. Case study: canopy bridges for primate conservation. Handb. Road Ecol. 1, 341–343. https://doi.org/10.1002/9781118568170.ch41 (2015).

    Article  Google Scholar 

  • 12.

    Hernández-pérez, E. Rope bridges: a strategy for enhancing habitat connectivity of the Black Howler Monkey (Alouatta pigra). Neotrop. Primates 22, 94–96 (2015).

    Google Scholar 

  • 13.

    Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J. & Deichmann, J. L. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals. Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-04112-x (2017).

    CAS  Article  Google Scholar 

  • 14.

    Ni, Q. et al. Microhabitat use of the western black-crested gibbon inhabiting an isolated forest fragment in southern Yunnan, China: implications for conservation of an endangered species. Primates 59, 45–54. https://doi.org/10.1007/s10329-017-0634-7 (2018).

    Article  PubMed  Google Scholar 

  • 15.

    Al-Razi, H., Maria, M. & Muzaffar, S. Mortality of primates due to roads and power lines in two forest patches in Bangladesh. Zoologia 36, 1–6. https://doi.org/10.3897/zoologia.36.e33540 (2019).

    Article  Google Scholar 

  • 16.

    Birot, H., Campera, M., Imron, M. A. & Nekaris, K. A. I. Artificial canopy bridges improve connectivity in fragmented landscapes: the case of Javan slow lorises in an agroforest environment. Am. J. Primatol. 82, 1–10. https://doi.org/10.1002/ajp.23076 (2020).

    Article  Google Scholar 

  • 17.

    Forman, R. T. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207 (1998).

    Article  Google Scholar 

  • 18.

    Sarma, K. & Kumar, A. The day range and home range of the Eastern Hoolock Gibbon Hoolock leuconedys (Mammalia: Primates: Hylobatidae) in lower dibang valley district in Arunachal Pradesh India. J. Threat. Taxa 8, 8641–8651. https://doi.org/10.11609/jott.2739.8.4.8641-8651 (2016).

    Article  Google Scholar 

  • 19.

    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. https://doi.org/10.1126/sciadv.1600946 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Balbuena, D., Alonso, A., Panta, M., Garcia, A. & Gregory, T. Mitigating tropical forest fragmentation with natural and semi-artificial canopy bridges. Diversity https://doi.org/10.3390/d11040066 (2019).

    Article  Google Scholar 

  • 21.

    Valladares-Padua, C. B., Junior, L. C. & Padua, S. A pole bridge to avoid primates road kils. Neotrop. Primates 3, 13 (1995).

    Google Scholar 

  • 22.

    Weston, N., Goosem, M., Marsh, H., Cohen, M. & Wilson, R. Using canopy bridges to link habitat for arboreal mammals: successful trials in the Wet Tropics of Queensland. Aust. Mammal. 33, 93–105. https://doi.org/10.1071/AM11003 (2011).

    Article  Google Scholar 

  • 23.

    Gregory, T. et al. Methods to establish canopy bridges to increase natural connectivity in linear infrastructure development. Soc. Pet. Eng. J. https://doi.org/10.2118/165598-MS (2013).

    Article  Google Scholar 

  • 24.

    Teixeira, F. Z., Printes, R. C., Fagundes, J. C. G., Alonso, A. C. & Kindel, A. Canopy bridges as road overpasses for wildlife in urban fragmented landscapes. Biota Neotrop. 13, 117–123. https://doi.org/10.1590/S1676-06032013000100013 (2013).

    Article  Google Scholar 

  • 25.

    Yokochi, K. & Bencini, R. A remarkably quick habituation and high use of a rope bridge by an endangered marsupial, the western ringtail possum. Nat. Conserv. 11, 79–94. https://doi.org/10.3897/natureconservation.11.4385 (2015).

    Article  Google Scholar 

  • 26.

    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the Mammals of the World Vol. 3 (Lynx Edicions, Barcelona, 2013).

    Google Scholar 

  • 27.

    Wilson, D. E. & Lacher, T. E. Handbook of the Mammals of the World Vol. 6 (Lynx Edicions, Barcelona, 2016).

    Google Scholar 

  • 28.

    Ancrenaz, M. Orang-utan Bridges in Lower Kinabatangan: Field surveys between Abai and Batu Puteh. https://www.arcusfoundation.org/wp%E2%80%90content/uploads/2010/01/Kinabatangan%E2%80%90Orangutan%E2%80%90Rope%E2%80%90Bridges%E2%80%90Ancrenaz%E2%80%902010.pdf (2010).

  • 29.

    Goossens, B. & Ambu, L. N. Sabah wildlife department and 10 years of research: Towards a better conservation of Sabah’s wildlife. J. Oil Palm Environ. 3, 38–51. https://doi.org/10.5366/jope.2012.05 (2012).

    Article  Google Scholar 

  • 30.

    Kumar, A., Devi, A., Gupta, A. K. & Sarma, K. Population, behavioural ecology and conservation of Hoolock Gibbon in Northeast India. Rare Anim. India 1, 242–266 (2013).

    Google Scholar 

  • 31.

    Yap, J. L., Ruppert, N. & Rosely, N. F. N. Activities, habitat use and diet of wild Dusky Langurs, Trachypithecus obscurus in different habitat types in Penang, Malaysia. J. Sustain. Sci. Manag. 14, 71–85 (2019).

    Google Scholar 

  • 32.

    Arjun Oli. Banke National Park builds canopy bridge to reduce wild animal road accidents. myRepublica https://myrepublica.nagariknetwork.com/news/banke-national-park-builds-canopy-bridge-to-reduce-wild-animal-road-accidents (2019).

  • 33.

    Lekshmi Priya S. Kerala Sanctuary builds ‘canopy bridges’, saves animals from road hits!. The Better India https://www.thebetterindia.com/185838/kerala-forest-department-chinnar-wildlife-sanctuary-canopy-bridges-india (2019).

  • 34.

    Chivers, D. J. Malayan Forest Primates: Ten Years’ Study in Tropical Rain Forest (Plenum Press, New York, 1982).

    Google Scholar 

  • 35.

    Cheyne, S. M., Thompson, C. J. H. & Chivers, D. J. Travel adaptations of Bornean Agile Gibbons Hylobates albibarbis (Primates: Hylobatidae) in a degraded secondary forest, Indonesia. J. Threat. Taxa 5, 3963–3968. https://doi.org/10.11609/JoTT.o3361.3963-8 (2013).

    Article  Google Scholar 

  • 36.

    Campbell, C. O., Cheyne, S. M. & Rawson, B. M. Best practice guidelines for the rehabilitation and translocation of gibbons. IUCN SSC Primate Spec. Group https://doi.org/10.2305/IUCN.CH.2015.SSC-OP.51.en (2015).

    Article  Google Scholar 

  • 37.

    Saralamba, C. & Menpreeda, W. Increasing connectivity through artificial canopy bridge for the gibbons: a case study on the activity budget. Abstract for The 87th Annual Meeting of the American Association of Physical Anthropologists, Austin (Texas) (2018).

  • 38.

    Chan, B. P. L., Fellowes, J. R., Geissmann, T., & Jianfeng, Z. Hainan Gibbon Status Survey and Conservation Action Plan: VERSION I (Last Updated November 2005). Kadoorie Farm & Botanic Garden Technical Report No.3 (2005).

  • 39.

    Chan, B. P. L. Hainan gibbon Nomascus hainanus (Thomas, 1892). In Primates in Peril: The World’s 25 Most Endangered Primates 2014–2016. (eds Schwitzer, C., et al.). IUCN SSC Primate Spec. Gr. (PSG), Int. Primatol. Soc. (IPS), Conserv. Int. (CI), Bristol Zool. Soc. Arlington, VA. 67–69 (2015).

  • 40.

    Chan, B. P. L., Lo, Y. F. P. & Mo, Y. New hope for the Hainan gibbon: formation of a new group outside its known range. Oryx 54, 296. https://doi.org/10.1017/S0030605320000083 (2020).

    Article  Google Scholar 

  • 41.

    Zeng, X. et al. Hainan Gibbon Conservation Action Plan 2016–2020. https://www.gibbons.asia/wp-content/uploads/2017/03/Hainan-Gibbon-Action-Plan-2016-2020.pdf (2016).

  • 42.

    Zheng, Y., Cai, Q., Cheng, S. & Li, X. Characteristics on intensity and precipitation of super typhoon Rammasun (1409) and reason why it rapidly intensified offshore. Torrential Rain Disast. 33, 333–341 (2014).

    Google Scholar 

  • 43.

    Chivers, D. J. The Siamang in Malaya. A Field Study of a Primate in Tropical Rainforest. Karger (1974).

  • 44.

    Cristóbal-Azkarate, J. & Arroyo-Rodríguez, V. Diet and Activity Pattern of Howler Monkeys (Alouatta palliata) in Los Tuxtlas, Mexico: effects of Habitat Fragmentation and Implications for Conservation. Am. J. Primatol. 69, 1013–1029. https://doi.org/10.1002/ajp.20420 (2007).

    Article  PubMed  Google Scholar 

  • 45.

    Arroyo-Rodríguez, V. & Mandujano, S. Conceptualization and measurement of habitat fragmentation from the primates’ perspective. Int. J. Primatol. 30, 497–514 (2009).

    Article  Google Scholar 

  • 46.

    Fan, P., Scott, M. B., Fei, H. & Ma, C. Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Integr. Zool. 8, 356–364. https://doi.org/10.1111/j.1749-4877.2012.00300.x (2013).

    Article  PubMed  Google Scholar 

  • 47.

    Mass, V. et al. Lemur bridges provide crossing structures over roads within a forested mining concession near moramanga, toamasina province, Madagascar. Conserv. Evid. 8, 11–18 (2011).

    Google Scholar 

  • 48.

    Naresh Mitra. Guwahati: Natural bridge reunites hoolock gibbons after 100 years. Times of India https://timesofindia.indiatimes.com/city/guwahati/natural-bridge-reunites-hoolock-gibbons-after-100-years/articleshow/69998213.cms (2019).

  • 49.

    Fleagle, J. G. Locomotion and posture. In Malayan Forest Primates: Ten Years’ Study in Tropical Rain Forest (ed. Chivers, D. J.) 191–207 (Plenum Press, New York, 1980).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives LEED Platinum certification

    Benthic ecosystem cascade effects in Antarctica using Bayesian network inference