in

Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model

  • 1.

    Liu, H. Z., Liu, L., Hui, H. & Wang, Q. Structural characterization and antineoplastic activity of Saccharomyces cerevisiae mannoprotein. Int. J. Food Prop. 18, 359–371 (2015).

    CAS  Google Scholar 

  • 2.

    Kocourek, J. & Ballou, C. E. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100, 1175–1181 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).

    CAS  PubMed  Google Scholar 

  • 4.

    Jin, X., Zhang, M., Cao, G. F. & Yang, Y. F. Saccharomyces cerevisiae mannan induces sheep beta-defensin-1 expression via Dectin-2-Syk-p38 pathways in ovine ruminal epithelial cells. Vet. Res. (Faisalabad) 50, 8 (2019).

    Google Scholar 

  • 5.

    Michael, C. F. et al. Airway epithelial repair by a prebiotic mannan derived from Saccharomyces cerevisiae. J. Immunol. Res. 2017, 8903982 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Lew, D. B. et al. Beneficial effects of prebiotic Saccharomyces cerevisiae mannan on allergic asthma mouse models. J. Immunol. Res. 2017, 3432701 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    CAS  PubMed  Google Scholar 

  • 9.

    Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).

    CAS  PubMed  Google Scholar 

  • 10.

    Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    CAS  PubMed  Google Scholar 

  • 11.

    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Arora, T. & Bäckhed, F. The gut microbiota and metabolic disease: Current understanding and future perspectives. J. Intern. Med. 280, 339–349 (2016).

    CAS  PubMed  Google Scholar 

  • 13.

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 16.

    The Human Microbiome Project Consortium. Structure, function, and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    ADS  PubMed Central  Google Scholar 

  • 17.

    Bolam, D. N. & Koropatkin, N. M. Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012).

    CAS  PubMed  Google Scholar 

  • 18.

    Foley, M. H., Cockburn, D. W. & Koropatkin, N. M. The Sus operon: A model system for starch uptake by the human gut Bacteroidetes. Cell. Mol. Life. Sci. 73, 2603–2617 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Bågenholm, V. et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus. J. Biol. Chem. 292, 229–243 (2017).

    PubMed  Google Scholar 

  • 20.

    Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: The Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).

    CAS  PubMed  Google Scholar 

  • 25.

    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Varyukhina, S. et al. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect. 14, 273–278 (2012).

    CAS  PubMed  Google Scholar 

  • 27.

    López-Boado, Y. S. et al. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148, 1305–1315 (2000).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Delday, M., Mulder, I., Logan, E. T. & Grant, G. Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of Crohn’s disease. Inflamm. Bowel Dis. 25, 85–96 (2019).

    PubMed  Google Scholar 

  • 29.

    Hansen, R. et al. A phase I randomized, double-blind, placebo-controlled study to assess the safety and tolerability of (Thetanix) Bacteroides thetaiotaomicron in adolescents with stable Crohn’s disease. https://www.4dpharmaplc.com/application/files/1815/5824/8886/Thetanix_DDW_poster_2019.pdf. Accessed 15 July 2020 (2019).

  • 30.

    Salyers, A. A., Vercellotti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Rawi, M. H., Zaman, S. A., Pa’ee, K. F., Leong, S. S. & Sarbini, S. R. Prebiotics metabolism by gut-isolated probiotics. J. Food Sci. Technol. 57, 1–14 (2020).

    Google Scholar 

  • 32.

    Oba, S. et al. Yeast mannan increases Bacteroides thetaiotaomicron abundance and suppresses putrefactive compound production in in vitro fecal microbiota fermentation. Biosci. Biotechnol. Biochem. 84, 2174–2178 (2020).

    CAS  PubMed  Google Scholar 

  • 33.

    Sasaki, D. et al. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 8, 435 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Takagi, R. et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS ONE 11, e0160533 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Tong, J., Liu, C., Summanen, P., Xu, H. & Finegold, S. M. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17, 64–68 (2011).

    CAS  PubMed  Google Scholar 

  • 38.

    Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS  PubMed  Google Scholar 

  • 40.

    den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Google Scholar 

  • 41.

    Gibson, G. R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    PubMed  Google Scholar 

  • 42.

    Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Chang, C. J. et al. Next generation probiotics in disease amelioration. J. Food Drug Anal. 27, 615–622 (2019).

    CAS  PubMed  Google Scholar 

  • 44.

    Tan, H. et al. Pilot safety evaluation of a novel strain of Bacteroides ovatus. Front. Genet. 9, 539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Tzianabos, A. O., Onderdonk, A. B., Rosner, B., Cisneros, R. L. & Kasper, D. L. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262, 416–419 (1993).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Bamba, T., Matsuda, H., Endo, M. & Fujiyama, Y. The pathogenic role of Bacteroides vulgatus in patients with ulcerative colitis. J Gastroenterol. 30(Suppl 8), 45–47 (1995).

    PubMed  Google Scholar 

  • 47.

    Ulsemer, P. et al. Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol. Immunother. 62, 875–887 (2013).

    CAS  PubMed  Google Scholar 

  • 48.

    Tan, H., Zhao, J., Zhang, H., Zhai, Q. & Chen, W. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl. Microbiol. Biotechnol. 103, 2353–2365 (2019).

    CAS  PubMed  Google Scholar 

  • 49.

    Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).

    CAS  PubMed  Google Scholar 

  • 50.

    Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).

    CAS  PubMed  Google Scholar 

  • 51.

    Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).

    PubMed  Google Scholar 

  • 53.

    Okubo, T. et al. Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Biosci. Biotechnol. Biochem. 58, 1364–1369 (1994).

    CAS  Google Scholar 

  • 54.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS  PubMed  Google Scholar 

  • 55.

    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Li, W., Fu, L., Niu, B., Wu, S. & Wooley, J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  Google Scholar 

  • 58.

    Maidak, B. L. et al. The RDP-II (ribosomal database project). Nucleic Acids Res. 29, 173–174 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Furet, J. P. et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol. Ecol. 68, 351–362 (2009).

    CAS  PubMed  Google Scholar 

  • 62.

    Goubet, F., Jackson, P., Deery, M. J. & Dupree, P. Polysaccharide analysis using carbohydrate gel electrophoresis: A method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal. Biochem. 300, 53–68 (2002).

    CAS  PubMed  Google Scholar 

  • 63.

    Terrapon, N. et al. PULDB: The expanded database of polysaccharide utilization loci. Nucleic Acids Res. 46, D677–D683 (2018).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives LEED Platinum certification

    Benthic ecosystem cascade effects in Antarctica using Bayesian network inference