Our results show that a species’ distribution—measured as change in mean center of biomass and change in northern and southern range extent—depends on the species relationship with oceanographic versus static environmental variables. In the fall, species whose distributions are most influenced by bottom salinity have shifted mean centroids of biomass significantly more than species whose distributions are most influenced by depth or substrate (nonparametric pairwise Wilcoxon test p = 0.00007 and p = 0.0013, Fig. 1a). Species whose distributions are most influenced by bottom temperature have shifted mean centroids of biomass significantly more than species whose distributions are most influenced by depth (nonparametric pairwise Wilcoxon test p = 0.0083, Fig. 1a) and shifted the northern and southern extent of their biomass weighted ranges significantly more than species whose distributions are most influenced by depth and substrate (nonparametric pairwise Wilcoxon test p = 0.00018 and p = 0.014, Fig. 1c and nonparametric pairwise Wilcoxon test p = 0.0038 and p = 0.024, Fig. 1d). Percentage change in biomass weighted range size did not depend on the strongest predictor variable for a species distribution (Fig. 1b). These patterns were not as strong in the spring (see Supplemental Fig. 1).
Shifts in mean centroid of biomass from first 5 years to last 5 years in kilometers (a), percentage change in biomass range size from first 5 years to last 5 years in meters squared (b). Change in northern (c) and southern (d) extent of the biomass weighted range from first 5 years to last 5 years (n = 93). Brackets and numbers represent p-value. Whiskers represent 1.5* interquartile range. Box represents interquartile range as distance between first and third quartiles. Line represents median, red point represents mean, and black points represent outliers (outside of 1.5*IQR).
Our results show that in the spring and fall, pelagic species’ distributions are primarily influenced by ocean temperature and depth, while demersal species’ distributions are predominately influenced by ocean temperature and substrate, and benthic species’ distributions are influenced by substrate (Fig. 2).
Percentage of each species group that had substrate, depth, bottom temperature, and salinity as the strongest predictor variable in terms of deviance explained for the entire time series (n = 93). Results were similar across seasons (see Supplemental Fig. 2).
Pelagic species have shifted mean center of biomass significantly more over the historic time period compared with benthic species in the fall and significantly more than demersal species in the spring (nonparametric pairwise Wilcoxon test p = 0.039 and p = 0.045, Figs. 3a and 4a). Similarly, pelagic species have expanded their range size significantly more than demersal species and have shifted the northern extent of their range boundary significantly more than demersal species in the spring (nonparametric pairwise Wilcoxon test p = 0.024 and p = 0.028, Fig. 4c, d).
Fall shifts in southern mean centroid (a), percentage change in range size (b), shifts in northern range boundary (c), and southern range boundary (d) from first 5 years and last 5 years in latitudinal degrees for each species group (n = 93). Brackets and numbers represent p-value. Whiskers represent 1.5* interquartile range. Box represents interquartile range as distance between first and third quartiles. Line represents median, red point represents mean, and black points represent outliers (outside of 1.5*IQR).
Spring shifts in southern mean centroid (a), percentage change in range size (b), shifts in northern range boundary (c), and southern range boundary (d) from first 5 years and last 5 years in latitudinal degrees for each species group (n = 91). Brackets and numbers represent p-value. Whiskers represent 1.5* interquartile range. Box represents interquartile range as distance between first and third quartiles. Line represents median, red point represents mean, and black points represent outliers (outside of 1.5*IQR).
These results indicate that benthic species, more influenced by substrate than pelagic species, have retained their historical distributions in response to climate change, while pelagic species have shifted drastically. Exemplars of benthic fish that have retained their distributions include American plaice (Hippoglossoides platessoides), witch flounder (Glyptocephalus cynoglossus), and winter flounder (Pseudopleuronectes americanus) (Fig. 5a). These species distributions are strongly influenced by benthic substrate (Supplemental Data 1 and 2). Exemplars of pelagic fish that have shifted their distributions include rough scad (Trachurus lathami), Atlantic menhaden (Brevoortia tyrannus), and round herring (Etrumeus teres) (Fig. 5b). These species distributions are strongly influenced by bottom temperature and salinity (Supplemental Data 1 and 2).
Biomass weighted mean centroids were calculated for two time periods: time period 1 (1986–1990) and time period 2 (2014–2018). Benthic species associated with bottom substrate retain their historical distributions (a) whereas pelagic species have shifted distributions (b). Species were selected to show extreme shifts and extreme retentions of distributions, and all shifts can be found in Supplemental Data 1 and 2.
By linking the historic evidence of species distribution shifts with their relationship with bottom temperature, bottom salinity, and benthic substrate, we have identified a broad generalization on how species with specific life history traits may be influenced by future climate change. Recent work suggests that pelagic species may shift farther under climate change compared with benthic invertebrates14, and recent studies have included sediment type as a constraining variable in projections of future species distributions15. In conjunction with this work, our research highlights that these strong shifts have already occurred historically, and they are influenced by the strength of a pelagic fish species’ relationship with bottom temperature or salinity, compared with benthic species, which are more influenced by substrate. Given the importance of bottom substrate on benthic species distributions, we may see shifts in population dynamics, such as abundance and productivity as temperatures warm instead of geographic shifts in distributions. For, increased ocean warming that may go beyond their preferred thermal envelope is expected in the Northeast LME and Mid Atlantic9. If affinity for substrate type keeps benthic species in regions that become too warm, these species may find themselves in suboptimal conditions and will not be able to relocate as easily as pelagic species.
Moreover, we examine demersal species that are influenced by both bottom temperature and substrate and have shifted moderately compared to benthic or pelagic species. Research in the North Sea suggests that demersal species are shifting to deeper waters, which may suggest an interaction between bottom temperature and depth that requires further research16. Research in the Northeast LME has linked the shrinking spatial distribution of cusk, a demersal species, to a combination of ocean warming and the ensuing fragmentation of suitable bottom habitat17, suggesting another interaction requiring future examination. As an intermediate case, these species may be the most unpredictable under climate change, and thus fisheries management will have to consider the varying nature of these species’ distribution shifts.
These results provide historical evidence of pelagic species shifting distributions while benthic species remain more associated with their preferred substrate, which is most likely a result of the functional differences between these types of species. For example, the recruitment success of Atlantic menhaden (Brevoortia tyrannus), a pelagic schooling species we identified to shift historical distributions, is strongly related to ocean temperatures and larger climate dynamics such as the Atlantic Multidecadal Oscillation which influences temperatures and salinity18. The suitable habitat and migration timing of mackerel (Scomber scombrus), a pelagic schooling species, has been linked to changes in ocean temperatures and multidecadal variability19, relying on temperature cues for their seasonal migrations. Research in the North Sea and Baltic Sea suggest that the northward shift of anchovies (Engraulis encrasicolus) and sardines (Sardina pilchardus), two pelagic species, is strongly linked to temperature20. Benthic species, on the other hand, rely on structured biotic habitats, such as marshes, coral reefs, and submerged aquatic vegetation as well as abiotic sediment for their survival21. The importance of abiotic sediment stems from the productivity of these habitats, as they usually contain high levels of detritus, microbes, and microinvertebrates22.
It is important to identify the limitations of the approaches used in this study. The original species-CPUE data were collected from North Carolina to the Gulf of Maine, meaning we sampled a realized niche of the studied species. In comparison, the fundamental niche of the species may extend beyond our study area, in both the southern and northern directions. This study examined the role of bottom temperature, salinity, depth and substrate on species distributions, but was unable to examine the potential effects of fishing pressure, interspecific interactions, demographic changes, population sizes, or larval dispersal on species distributions and abundance23. While research has demonstrated that simple area-weighted center of distributions can be biased, we attempted to account for this by using several metrics of distribution (area occupied, northern, and southern extents of ranges)24.
Despite these limitations, we expect our results will be valuable for fisheries managers as they anticipate the likelihood of species distribution shifts in their management areas. While current work has examined the role of temperature in determining species shifts, our work highlights the importance of examining the differential role of other static ecological variables on determining a species likelihood of shifting distributions under climate change. By uncovering the differential effects of certain habitat constraints on pelagic versus demersal and benthic species, we can begin to understand why certain species have shifted dramatically over the last thirty years, while others have retained their historical distributions. These results highlight the need for stock assessments and future species distribution models that include the functional differences among species as well as the environmental variables that constrain their distributions in order to more appropriately understand the potential impacts of climate change on their future distributions. Only then can we understand how future fisheries will be impacted by the ecological effects of climate change.
Source: Ecology - nature.com