in

Declines over the last two decades of five intertidal invertebrate species in the western North Atlantic

  • 1.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  • 2.

    Pfister, C. A. et al. Historical baselines and the future of shell calcification for a foundation species in a changing ocean. Proc. Royal Soc. B-Biol. Sci. 283, https://doi.org/10.1098/rspb.2016.0392 (2016).

  • 3.

    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).

    Article  Google Scholar 

  • 4.

    Waldbusser, G. G. & Salisbury, J. E. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annu. Rev. Mar. Sci. 6, 221–247 (2014).

    Article  Google Scholar 

  • 5.

    Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evolution Syst. 37, 373–404 (2006).

    Article  Google Scholar 

  • 6.

    Kordas, R. L., Donohue, I. & Harley, C. D. G. Herbivory enables marine communities to resist warming. Sci. Adv. 3, https://doi.org/10.1126/sciadv.1701349 (2017).

  • 7.

    Kroeker, K. J., Kordas, R. L. & Harley, C. D. G. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, https://doi.org/10.1098/rsbl.2016.0802 (2017).

  • 8.

    Jellison, B. M. & Gaylord, B. Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web. Oecologia 190, 955–967 (2019).

    Article  Google Scholar 

  • 9.

    Wootton, J. T., Pfister, C. A. & Forester, J. D. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc. Natl Acad. Sci. USA 105, 18848–18853 (2008).

    CAS  Article  Google Scholar 

  • 10.

    Burrows, M. T. et al. Global-scale species distributions predict temperature-related changes in species composition of rocky shore communities in Britain. Glob. Change Biol. 26, 2093–2105 (2020).

    Article  Google Scholar 

  • 11.

    Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Wang, Z. H. A. et al. The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: insights from a transregional coastal carbon study. Limnol. Oceanogr. 58, 325–342 (2013).

    CAS  Article  Google Scholar 

  • 13.

    Colton, H. S. On some varieties of Thais lapillus in the Mount Desert region, a study of individual ecology. Proc. Acad. Natl Sci. Phila. 68, 440–454 (1916).

    Google Scholar 

  • 14.

    Fisher, J. A. D. Exploring ecology’s attic: overlooked ideas on intertidal food webs. Bull. Ecol. Soc. Am. 86, 145–151 (2005).

  • 15.

    Connell, J. H. Effects of competition, predation by Thais lapillus, and other factors on natural populations of barnacle Balanus balanoides. Ecol. Monogr. 31, 61–104 (1961).

    Article  Google Scholar 

  • 16.

    Lubchenco, J. Plant species diversity in a marine intertidal community—importance of herbivore food preference and algal competitive abilities. Am. Naturalist 112, 23–39 (1978).

    Article  Google Scholar 

  • 17.

    Lubchenco, J. & Menge, B. A. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48, 67–94 (1978).

    Article  Google Scholar 

  • 18.

    Petraitis, P. S. & Dudgeon, S. R. Variation in recruitment and the establishment of alternative community states. Ecology 96, 3186–3196 (2015).

    CAS  Article  Google Scholar 

  • 19.

    Lord, J. P., Harper, E. M. & Barry, J. P. Ocean acidification may alter predator-prey relationships and weaken nonlethal interactions between gastropods and crabs. Mar. Ecol. Prog. Ser. 616, 83–94 (2019).

    CAS  Article  Google Scholar 

  • 20.

    Sorte, C. J. B. et al. Long-term declines in an intertidal foundation species parallel shifts in community composition. Glob. Change Biol. 23, 341–352 (2017).

    Article  Google Scholar 

  • 21.

    Salisbury, J. E. & Jönsson, B. F. Rapid warming and salinity changes in the Gulf of Maine alter surface ocean carbonate parameters and hide ocean acidification. Biogeochemistry 141, 401–418 (2018).

    CAS  Article  Google Scholar 

  • 22.

    Southward, A. J. 40 years of changes in species composition and population density of barnacles on a rocky shore near Plymouth. J. Mar. Biol. Assoc. UK 71, 495–513 (1991).

    Article  Google Scholar 

  • 23.

    Hawkins, S. J., Southward, A. J. & Genner, M. J. Detection of environmental change in a marine ecosystem—evidence from the western English Channel. Sci. Total Environ. 310, 245–256 (2003).

    CAS  Article  Google Scholar 

  • 24.

    Hawkins, S. J. et al. Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Mar. Ecol. Prog. Ser. 396, 245–259 (2009).

    Article  Google Scholar 

  • 25.

    Mieszkowska, N., Burrows, M. T., Pannacciulli, F. G. & Hawkins, S. J. Multidecadal signals within co-occurring intertidal barnacles Semibalanus balanoides and Chthamalus spp. linked to the Atlantic Multidecadal Oscillation. J. Mar. Syst. 133, 70–76 (2014).

    Article  Google Scholar 

  • 26.

    Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 389, 193–202 (2009).

    Article  Google Scholar 

  • 27.

    Thomas, A. C., Townsend, D. W. & Weatherbee, R. Satellite-measured phytoplankton variability in the Gulf of Maine. Continental Shelf Res. 23, 971–989 (2003).

    Article  Google Scholar 

  • 28.

    Commito, J. A., Jones, B. R., Jones, M. A., Winders, S. E. & Como, S. After the fall: legacy effects of biogenic structure on wind-generated ecosystem processes following mussel bed collapse. Diversity-Basel 11, https://doi.org/10.3390/d11010011 (2019).

  • 29.

    Beal, B. F. et al. Spatial variability in recruitment of an infaunal bivalve: experimental effects of predator exclusion on the softshell clam (Mya arenaria L.) along three tidal estuaries in southern Maine, USA. J. Shellfish Res. 37, 27 (2018).

    Article  Google Scholar 

  • 30.

    Roman, J. Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc. R. Soc. B-Biol. Sci. 273, 2453–2459 (2006).

    Article  Google Scholar 

  • 31.

    Vadas, R. L.,Sr. & Elner, R. W. Plant-animal interactions in the north-west Atlantic. In Plant-Animal Interactions in the Marine Benthos (eds. John, D. M., Hawkins, S. J. & Price, J. H.). Systematics Association Special Vol. 46, 33–60 (Oxford: Clarendon Press, 1992).

  • 32.

    Wethey, D. S. et al. Response of intertidal populations to climate: effects of extreme events versus long term change. J. Exp. Mar. Biol. Ecol. 400, 132–144 (2011).

    Article  Google Scholar 

  • 33.

    Maggs, C. A. et al. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89, S108–S122 (2008).

    Article  Google Scholar 

  • 34.

    Wares, J. P. & Cunningham, C. W. Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55, 2455–2469 (2001).

    CAS  Article  Google Scholar 

  • 35.

    Chapman, J. W., Carlton, J. T., Bellinger, M. R. & Blakeslee, A. M. H. Premature refutation of a human-mediated marine species introduction: the case history of the marine snail Littorina littorea in the Northwestern Atlantic. Biol. Invasions 9, 995–1008 (2007).

    Article  Google Scholar 

  • 36.

    Cloern, J. E. & Jassby, A. D. Drivers of changes in estuarine-coast ecosystems: discoveries from four decades of study in San Francisco Bay. Rev. Geophys. 50, 33 (2012).

    Article  Google Scholar 

  • 37.

    Kemp, W. M. et al. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29 (2005).

    Article  Google Scholar 

  • 38.

    Kübler, J. E. & Dudgeon, S. R. Prediciting effects of ocean acidification and warming on algae lacking carbon concentrating mechanisms. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0132806 (2015).

  • 39.

    Petraitis, P. S., Liu, H. & Rhile, E. C. Densities and cover data for intertidal organisms in the Gulf of Maine, USA, from 2003 to 2007. Ecology 89, 588 http://esapubs.org/archive/ecol/E089/032 (2008).

    Article  Google Scholar 

  • 40.

    Petraitis, P. S., Liu, H. & Rhile, E. C. Barnacle, fucoid, and mussel recruitment in the Gulf of Maine, USA, from 1997 to 2007. Ecology 90, 571 http://esapubs.org/archive/ecol/E090/039/ (2009).

    Article  Google Scholar 

  • 41.

    Petraitis, P. S. & Vidargas, N. A. Marine intertidal organisms found in experimental clearings on sheltered shores in the Gulf of Maine, USA. Ecology 87, 796 http://esapubs.org/archive/ecol/E087/047/ (2006).

    Article  Google Scholar 

  • 42.

    Lewis, J. R. The Ecology of Rocky Shores (English University Press, 1964).

  • 43.

    Horton, T. et al. World register of marine species (WoRMS). http://www.marinespecies.org (2010).

  • 44.

    Petraitis, P. S. & Dudgeon, S. R. Data and R scripts for analyses of declines in invertebrate species from the Gulf of Maine, USA, 1997–2018 ver 1. Environmental Data Initiative https://doi.org/10.6073/pasta/7ad4e0c85ff585199cb2a007eb291c9d (2020).

  • 45.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  • 46.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, Second edn. (Springer, 2002).

  • 47.

    Bartón, K. MuMIn: multi-model inference R package version 1.40.0. https://CRAN.R-project.org/package=MuMIn (2019).

  • 48.

    Honaker, J., King, G. & Blackwell, M. Amelia II: a program for missing data. J. Stat. Softw. 45, 1–47 (2011).

    Article  Google Scholar 

  • 49.

    Choirat, C., Honaker, J., Imai, K., King, G. & Lau, O. Zelig: everyone’s statistical software. version 5.1.6.1. http://zeligproject.org (2008).

  • 50.

    Imai, K., King, G. & Lau, O. Toward a common framework for statistical analysis and development. J. Computational Graph. Stat. 17, 892–913 (2008).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach