Boskey, A. L., Wright, T. M. & Blank, R. D. Collagen and bone strength. J. Bone Miner. Res. 14, 330–335. https://doi.org/10.1359/jbmr.1999.14.3.330 (1999).
Fratzl, P. In Collagen (ed Fratzl, P.) 1–13 (Springer, Berlin, 2008).
Dehring, K. A., Smukler, A. R., Roessler, B. J. & Morris, M. D. correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl. Spectrosc. 60, 366–372 (2006).
Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833 (2009).
Mostaço-Guidolin, L. B. et al. Collagen morphology and texture analysis: From statistics to classification. Sci. Rep. 3, 2190. https://doi.org/10.1038/srep02190 (2013).
Schrof, S., Varga, P., Galvis, L., Raum, K. & Masic, A. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. J. Struct. Biol. 187, 266–275. https://doi.org/10.1016/j.jsb.2014.07.001 (2014).
Viguet-Carrin, S., Garnero, P. & Delmas, P. D. The role of collagen in bone strength. Osteoporos. Int. 17, 319–336. https://doi.org/10.1007/s00198-005-2035-9 (2006).
West, P., Torzilli, P., Chen, C., Lin, P. & Camacho, N. Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J. Biomed. Opt. 10, 014015 (2005).
Wang, X., Zhai, M., Zhao, Y. & Yin, J. A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann. Joint 3, 1–9 (2018).
Lee, Y.-C. et al. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nat. Commun. 8, 14220. https://doi.org/10.1038/ncomms14220 (2017).
Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
Ambrose, S. H. & Krigbaum, J. Bone chemistry and bioarchaeology. J. Anthropol. Archaeol. 22, 193–199. https://doi.org/10.1016/S0278-4165(03)00033-3 (2003).
13Katzenberg, M. A. In Biological Anthropology of the Human Skeleton (eds M. Katzenberg, A. & Saunders, S. R.) 413–441 (Wiley-Liss, Hoboken, 2000).
Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 5342. https://doi.org/10.1038/s41598-019-41557-8 (2019).
Pothier Bouchard, G. et al. Portable FTIR for on-site screening of archaeological bone intended for ZooMS collagen fingerprint analysis. J. Archaeol. Sci. Rep. 26, 101862. https://doi.org/10.1016/j.jasrep.2019.05.027 (2019).
Kaal, J., López-Costas, O. & Martínez, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10. https://doi.org/10.1016/j.jas.2015.11.001 (2016).
Van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).
Dobberstein, R. C. et al. Archaeological collagen: Why worry about collagen diagenesis?. Archaeol. Anthropol. Sci. 1, 31–42. https://doi.org/10.1007/s12520-009-0002-7 (2009).
Harbeck, M. & Grupe, G. Experimental chemical degradation compared to natural diagenetic alteration of collagen: Implications for collagen quality indicators for stable isotope analysis. Archaeol. Anthropol. Sci. 1, 43–57. https://doi.org/10.1007/s12520-009-0004-5 (2009).
Collins, M. J., Riley, M. S., Child, A. M. & Turner-Walker, G. A basic mathematical simulation of the chemical degradation of ancient collagen. J. Archaeol. Sci. 22, 175–183. https://doi.org/10.1006/jasc.1995.0019 (1995).
France, C. A. M., Thomas, D. B., Doney, C. R. & Madden, O. FT-Raman spectroscopy as a method for screening collagen diagenesis in bone. J. Archaeol. Sci. 42, 346–355. https://doi.org/10.1016/j.jas.2013.11.020 (2014).
Chadefaux, C., Le Hô, A.-S., Bellot-Gurlet, L. & Reiche, I. Curve-fitting Micro-ATR-FTIR studies of the amide I and II bands of type I collagen in archaeological bone materials. E-Preserv. Sci. Morana RTD 6, 129–137 (2009).
Sponheimer, M. et al. Saving old bones: A non-destructive method for bone collagen prescreening. Sci. Rep. 9, 13928. https://doi.org/10.1038/s41598-019-50443-2 (2019).
Goldenberg, L., Regev, L., Mintz, E. & Boaretto, E. Dating reassembled collagen from fossil bones. Radiocarbon 59, 1487–1496. https://doi.org/10.1017/rdc.2017.69 (2017).
Yizhaq, M. et al. Quality controlled radiocarbon dating of bones and charcoal from the early pre-pottery neolithic B (PPNB) of Motza (Israel). Radiocarbon 47, 193–206. https://doi.org/10.1017/s003382220001969x (2005).
Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791. https://doi.org/10.1038/nprot.2014.110 (2014).
Belbachir, K., Noreen, R., Gouspillou, G. & Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 395, 829–837. https://doi.org/10.1007/s00216-009-3019-y (2009).
de Campos Vidal, B. & Mello, M. L. S. Collagen type I amide I band infrared spectroscopy. Micron 42, 283–289. https://doi.org/10.1016/j.micron.2010.09.010 (2011).
Figueiredo, M., Gamelas, J. & Martins, A. In Infrared Spectroscopy-Life and Biomedical Sciences (ed Theophile, T.) (InTech, 2012).
Hanifi, A., McCarthy, H., Roberts, S. & Pleshko, N. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS ONE 8, e64822. https://doi.org/10.1371/journal.pone.0064822 (2013).
Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 39, 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x (2007).
Stani, C., Vaccari, L., Mitri, E. & Birarda, G. FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 229, 118006. https://doi.org/10.1016/j.saa.2019.118006 (2020).
Ramachandran, G. & Kartha, G. Structure of collagen. Nature 174, 269–270 (1954).
Ramachandran, G. & Kartha, G. Structure of collagen. Nature 176, 593–595 (1955).
Rich, A. & Crick, F. The molecular structure of collagen. J. Mol. Biol. 3, 483–484 (1961).
Egli, J., Schnitzer, T., Dietschreit, J. C., Ochsenfeld, C. & Wennemers, H. Why proline? Influence of ring-size on the collagen triple helix. Org. Lett. 22, 348–351 (2019).
Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenergetics 1767, 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004 (2007).
Surovell, T. A. & Stiner, M. C. Standardizing infra-red measures of bone mineral crystallinity: An experimental approach. J. Archaeol. Sci. 28, 633–642. https://doi.org/10.1006/jasc.2000.0633 (2001).
Garvie-Lok, S. J., Varney, T. L. & Katzenberg, M. A. Preparation of bone carbonate for stable isotope analysis: The effects of treatment time and acid concentration. J. Archaeol. Sci. 31, 763–776. https://doi.org/10.1016/j.jas.2003.10.014 (2004).
Hollund, H. I., Ariese, F., Fernandes, R., Jans, M. M. E. & Kars, H. Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry 55, 507–532. https://doi.org/10.1111/j.1475-4754.2012.00695.x (2013).
Berna, F., Matthews, A. & Weiner, S. Solubilities of bone mineral from archaeological sites: The recrystallization window. J. Archaeol. Sci. 31, 867–882. https://doi.org/10.1016/j.jas.2003.12.003 (2004).
Lebon, M., Reiche, I., Frohlich, F., Bahain, J. J. & Falgueres, C. Characterization of archaeological burnt bones: Contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the nu1nu3 PO4 domain. Anal. Bioanal. Chem. 392, 1479–1488 (2008).
Thompson, T. J. U., Gauthier, M. & Islam, M. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone. J. Archaeol. Sci. 36, 910–914. https://doi.org/10.1016/j.jas.2008.11.013 (2009).
Lebon, M. et al. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J. Archaeol. Sci. 37, 2265–2276. https://doi.org/10.1016/j.jas.2010.03.024 (2010).
Dal Sasso, G. et al. Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 463, 168–179. https://doi.org/10.1016/j.palaeo.2016.10.005 (2016).
Toffolo, M. B., Brink, J. S. & Berna, F. Bone diagenesis at the Florisbad spring site, Free State Province (South Africa): Implications for the taphonomy of the Middle and Late Pleistocene faunal assemblages. J. Archaeol. Sci. Rep. 4, 152–163. https://doi.org/10.1016/j.jasrep.2015.09.001 (2015).
Lebon, M., Reiche, I., Gallet, X., Bellot-Gurlet, L. & Zazzo, A. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58, 131–145. https://doi.org/10.1017/rdc.2015.11 (2016).
Pestle, W. J. et al. Hand-held Raman spectroscopy as a pre-screening tool for archaeological bone. J. Archaeol. Sci. 58, 113–120. https://doi.org/10.1016/j.jas.2015.03.027 (2015).
Madden, O., Chan, D. M. W., Dundon, M. & France, C. A. M. Quantifying collagen quality in archaeological bone: Improving data accuracy with benchtop and handheld Raman spectrometers. J. Archaeol. Sci. Rep. 18, 596–605. https://doi.org/10.1016/j.jasrep.2017.11.034 (2018).
Dal Sasso, G., Angelini, I., Maritan, L. & Artioli, G. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones. Talanta 179, 167–176. https://doi.org/10.1016/j.talanta.2017.10.059 (2018).
López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154. https://doi.org/10.1002/ajpa.23016 (2016).
López-Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romano y medieval gallega. Doctoral thesis, University of Granada, (2012).
Petibois, C., Gouspillou, G., Wehbe, K., Delage, J.-P. & Déléris, G. Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal. Bioanal. Chem. 386, 1961–1966. https://doi.org/10.1007/s00216-006-0828-0 (2006).
Haris, P. I. & Severcan, F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B Enzym. 7, 207–221. https://doi.org/10.1016/S1381-1177(99)00030-2 (1999).
Goormaghtigh, E., Ruysschaert, J.-M. & Raussens, V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys. J . 90, 2946–2957. https://doi.org/10.1529/biophysj.105.072017 (2006).
Paschalis, E. P. et al. Spectroscopic characterization of collagen cross-links in bone. J. Bone Miner. Res. 16, 1821–1828. https://doi.org/10.1359/jbmr.2001.16.10.1821 (2001).
D’Elia, M. et al. Evaluation of possible contamination sources in the 14C analysis of bone samples by FTIR spectroscopy. Radiocarbon 49, 201–210. https://doi.org/10.1017/s0033822200042120 (2007).
Karkanas, P., Bar-Yosef, O., Goldberg, P. & Weiner, S. Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. J. Archaeol. Sci. 27, 915–929. https://doi.org/10.1006/jasc.1999.0506 (2000).
López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51. https://doi.org/10.1016/j.jas.2016.02.001 (2016).
Trueman, C. N., Privat, K. & Field, J. Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 160–167. https://doi.org/10.1016/j.palaeo.2008.03.038 (2008).
Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N. & Weiner, S. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. J. Archaeol. Sci. 31, 721–739. https://doi.org/10.1016/j.jas.2003.11.003 (2004).
Salesse, K. et al. Variability of bone preservation in a confined environment: The case of the catacomb of Sts Peter and Marcellinus (Rome, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 43–54. https://doi.org/10.1016/j.palaeo.2014.07.021 (2014).
Weiner, S. Microarchaeology: Beyond the Visible Archaeological Record (Cambridge University Press, Cambridge, 2010).
Pate, F. D., Hutton, J. T. & Norrish, K. Ionic exchange between soil solution and bone: Toward a predictive model. Appl. Geochem. 4, 303–316. https://doi.org/10.1016/0883-2927(89)90034-6 (1989).
Nielsen-Marsh, C. M. & Hedges, R. E. M. Patterns of diagenesis in bone I: The effects of site environments. J. Archaeol. Sci. 27, 1139–1150. https://doi.org/10.1006/jasc.1999.0537 (2000).
Weiner, S. & Bar-Yosef, O. States of preservation of bones from prehistoric sites in the Near East: A survey. J. Archaeol. Sci. 17, 187–196. https://doi.org/10.1016/0305-4403(90)90058-D (1990).
Weiner, S., Goldberg, P. & Bar-Yosef, O. Bone preservation in Kebara cave, Israel using on-site Fourier transform infrared spectrometry. J. Archaeol. Sci. 20, 613–627. https://doi.org/10.1006/jasc.1993.1037 (1993).
Weiner, S., Goldberg, P. & Bar-Yosef, O. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications. J. Archaeol. Sci. 29, 1289–1308. https://doi.org/10.1006/jasc.2001.0790 (2002).
Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J. & Kars, H. Characterisation of microbial attack on archaeological bone. J. Archaeol. Sci. 31, 87–95. https://doi.org/10.1016/j.jas.2003.07.007 (2004).
Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451. https://doi.org/10.1016/0305-4403(90)90007-r (1990).
López-Costas, O., Müldner, G. & Martínez Cortizas, A. Diet and lifestyle in Bronze Age Northwest Spain: The collective burial of Cova do Santo. J. Archaeol. Sci. 55, 209–218. https://doi.org/10.1016/j.jas.2015.01.009 (2015).
Lopez-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário, APEQ 12, 55–67 (2015).
Collins, M. J. & Galley, P. Towards an optimal method of archaeological collagen extraction: The influence of pH and grinding. Ancient Biomolecules 2, 209–222 (1998).
Boskey, A. & Camacho, N. P. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28, 2465–2478. https://doi.org/10.1016/j.biomaterials.2006.11.043 (2007).
Kim, M., Bi, X., Horton, W., Spencer, R. & Camacho, N. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: Histologic and biochemical correlations. J. Biomed. Opt. 10, 031105 (2005).
Heinly, J. H., Guerin, H. L., Auerbach, J. D., Siskey, R. L. & Villarraga, M. L. In 56th Annual Meeting of the Orthopaedic Research Society Poster No. 1466 (2010.).
Mark, H. & Workman, J. Jr. Chemometrics: Derivatives in spectroscopy, Part I-the behavior of the derivative. Spectrosc. Eugene 18, 32–37 (2003).
Rieppo, L. et al. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr. Cartil. 20, 451–459. https://doi.org/10.1016/j.joca.2012.01.010 (2012).
Ami, D., Mereghetti, P. & Doglia, S. M. In Multivariate Analysis in Management, Engineering and the Sciences (eds de Freitas, L. V. & de Freitas, A. P. B. R.) https://www.intechopen.com/books/multivariate-analysis-in-management-engineering-and-the-sciences/multivariate-analysis-for-fourier-transform-infrared-spectra-of-complex-biological-systems-and-proce (Intech Open, 2013).
Saarakkala, S., Rieppo, L., Rieppo, J. & Jurvelin, J. In Microscopy: Science, Technology, Applications and Education Vol. 1 (eds Méndez-Vilas, A. & Díaz, J.) 403–414 (Formatex, 2010).
Smith, B. C. (CRC Press, Boca Raton, 2011).
Eriksson, L., Johansson, E., Kettaneh-Wold, N. & Wold, S. Introduction to Multi- and Megavariate Data Analysis using Projection Methods (PCA & PLS) (Umetrics AB, Umeå, 1999).
Garson, G. D. In Blue Book Series (Statistical Associates Publishers, Asheboro, 2016).
SmartPLS 3 (SmartPLS GmbH, Boenningstedt, 2015).
Source: Ecology - nature.com