in

Survive or swim: different relationships between migration potential and larval size in three sympatric Mediterranean octocorals

  • 1.

    Grinnell, I. Geography and evolution. Ecology 5, 225–229 (1924).

    Article  Google Scholar 

  • 2.

    Elton, C. Animal Ecology. 204 p. (Sidgewick & Jackson , 1927)

  • 3.

    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).

    Article  Google Scholar 

  • 4.

    Fordham, D. A. et al. How complex should models be? Comparing correlative and mechanistic range dynamics models. Glob. Change Biol. 24, 1357–1370 (2018).

    ADS  Article  Google Scholar 

  • 5.

    Pagel, J. & Schurr, F. M. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Glob. Ecol. Biogeogr. 21, 293–304. https://doi.org/10.1111/j.1466-8238.2011.00663.x (2012).

    Article  Google Scholar 

  • 6.

    Hanski, I. Metapopulation dynamics: does it help to have more of the same?. TREE 4, 113–114 (1989).

    CAS  PubMed  Google Scholar 

  • 7.

    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613 (2004).

    Article  Google Scholar 

  • 8.

    Urban, M. C. et al. Improving the forecast of biodiversity under climate change. Science 353(6304), 8466 (2016).

    Article  CAS  Google Scholar 

  • 9.

    Thomson, F. J. et al. Chasing the unknown: predicting seed dispersal mechanisms from plant traits. J. Ecol. 98, 1310–1318 (2010).

    Article  Google Scholar 

  • 10.

    Scheltema, R. S. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of the problem. Bull. Mar. Sci. 39(2), 290–322 (1986).

    Google Scholar 

  • 11.

    Levinton, J.S. Marine biology: function, biodiversity, ecology. 420 p. (Oxford University Press, 1995)

  • 12.

    Szmant, A. M. Reproductive ecology of Caribbean reef corals. Coral Reefs 5, 43–53. https://doi.org/10.1007/BF00302170 (1986).

    ADS  Article  Google Scholar 

  • 13.

    Harrison, P. L., & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals in Coral reef ecosystems (ed Dubinsky, Z. . 133–207 (Elsevier, 1990)

  • 14.

    Chia, F. S., Buckland-Nicks, J. & Young, C. M. Locomotion of marine invertebrates larvae: a review. Can. J. Zool. 62, 1205–1222 (1984).

    Article  Google Scholar 

  • 15.

    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).

    Article  Google Scholar 

  • 16.

    Botsford, L. W. et al. Connectivity, sustainanility, and yield: bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fisheries 19, 69–95 (2009).

    Article  Google Scholar 

  • 17.

    Siegel, D. A., Kinlan, B. P., Gaylord, B. & Gaines, S. D. Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 260, 83–96 (2003).

    ADS  Article  Google Scholar 

  • 18.

    Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74(1), 21–45 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Fitzpatrick, M. C. & Hargrove, W. W. The projection of species distribution models and the problem of non-analog climate. Biodiversity Conserv. 18, 2255–2261 (2009).

    Article  Google Scholar 

  • 20.

    Guizien, K., Brochier, T., Duchêne, J. C., Koh, B. S. & Marsaleix, P. Dispersal of Owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three-dimensional stochastic model. Mar. Ecol. Prog. Ser. 311, 47–66 (2006).

    ADS  Article  Google Scholar 

  • 21.

    Guizien, K., Belharet, M., Marsaleix, P. & Guarini, J. M. Using larval dispersal simulations for marine protected area design: application to the Gulf of Lions (NW Mediterranean). Limnol. Oceanogr. 57(4), 1099–1112. https://doi.org/10.4319/lo.2012.57.4.1099 (2012).

    ADS  Article  Google Scholar 

  • 22.

    Weinberg, S. & Weinberg, F. The life cycle of a gorgonian: Eunicella singularis (Esper, 1794). Bijdr Dierkd 48, 127–140 (1979).

    Article  Google Scholar 

  • 23.

    Weinberg, S. Revision of the common Octocorallia of the Mediterranean circalittoral I. Gorgonacea. Beaufortia 24, 63–104 (1976).

    Google Scholar 

  • 24.

    Gori, A. et al. Spatial distribution patterns of the gorgonians Eunicella singularis, Paramuricea clavata and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar. Biol. 158, 143–158 (2011).

    Article  Google Scholar 

  • 25.

    Theodor, J. Contribution à l’étude des gorgones (VII): écologie et comportement de la planula. Vie et Milieu 18(2A), 291–301 (1967).

    Google Scholar 

  • 26.

    Ribes, M., Coma, R., Rossi, S. & Michelli, M. The cycle of gonadal development of Eunicella singularis (Cnidaria: Octocorallia). Invertebr. Biol. 126, 307–317 (2007).

    Article  Google Scholar 

  • 27.

    Santangelo, G. & Abbiati, M. Red coral: conservation and management of an over-exploited Mediterranean species. Aquat. Conserv. Mar. Freshw. Ecosys. 259, 253–259 (2001).

    Article  Google Scholar 

  • 28.

    Costantini, F. et al. Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation. Mar. Ecol. 31, 261–269 (2010).

    ADS  Article  Google Scholar 

  • 29.

    Santangelo, G., Carletti, E., Maggi, E. & Bramanti, L. Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar. Ecol. Prog. Ser. 248, 99–108. https://doi.org/10.3354/meps248099 (2003).

    ADS  Article  Google Scholar 

  • 30.

    Lacaze-Duthiers, H. Histoire Naturelle du Corail, 371 p (J.B, Baillière et Fils, 1864).

    Google Scholar 

  • 31.

    Martinez-Quintana, A., Bramanti, L., Viladrich, N., Rossi, S. & Guizien, K. Quantification of Corallium rubrum larvae motility behavior: implications for population connectivity. Mar. Biol. 162, 309–318 (2015).

    Article  Google Scholar 

  • 32.

    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Growth in a modular colonial marine invertebrate. Estuar. Coast Shelf Sci. 47, 459–470 (1998).

    ADS  Article  Google Scholar 

  • 33.

    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 117, 173–183 (1995).

    ADS  Article  Google Scholar 

  • 34.

    Linares, C. et al. Early life history of the Mediterranean gorgonian Paramuricea clavata: implications for population dynamics. Invertebr. Biol. 127(1), 1–11 (2008).

    Article  Google Scholar 

  • 35.

    Muscatine, L. Glycerol excretion by symbiotic algae from corals and Tridacna and tts control by the host. Science 156(3774), 516–519. https://doi.org/10.1126/science.156.3774.516 (1967).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 36.

    Pennington, J. T. & Emlet, R. B. Ontogenic and diel vertical migration of a planktonic echinoid larva, Dendraste rexcentricus (Eschscholtz): occurrence, causes, and probable consequences. J. Exp. Mar. Biol. and Ecol. 104, 69–95 (1986).

    Article  Google Scholar 

  • 37.

    Vogel, S. Life in a moving fluid: the physical biology of flow. 488 p. (Princeton University Press, 1994)

  • 38.

    Ben-David-Zaslow, R. & Benayahu, Y. Competence and longevity in planulae of several species of soft corals. Mar. Ecol. Prog. Ser. 163, 235–243 (1998).

    ADS  Article  Google Scholar 

  • 39.

    Maldonado, M. The ecology of sponge larvae. Can. J. Zool. 84(2), 175–194 (2006).

    Article  Google Scholar 

  • 40.

    Nishikawa, A., Masaya, K. & Sakai, K. Larval settlement rates and gene flow of broadcast-spawning (Acropora Tenuis) and Planula-Brooding (Stylophora Pistillata) corals. Mar. Ecol. Prog. Ser. 256, 87–97. https://doi.org/10.3354/meps256087 (2003).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Keough, M. J. & Chernoff, H. Dispersal and population variation in the bryozoan Bugula neritina. Ecology 68, 199–210 (1987).

    Article  Google Scholar 

  • 42.

    Mc Edward, L. R. Ecology of marine invertebrate larvae. 464 p. (CRC Press, 1995)

  • 43.

    Zelli, E. et al. Settlement dynamics and recruitment responses of Mediterranean gorgonians larvae to different crustose coralline algae species. J. Exp. Mar. Biol. Ecol. 1, 530–531. https://doi.org/10.1016/j.jembe.2020.151427 (2020).

    Article  Google Scholar 

  • 44.

    Knight-Jones, E. W. Gregariousness and some other aspects of the settling behaviour of Spirorbis. J. Mar. Biol. Assoc. UK 30, 201–222 (1951)

  • 45.

    Wilson, D. P. The settlement of Ophelia bicornis Savigny larvae. J. Mar. Biol. Assoc. UK 32, 209–233 (1953).

    Article  Google Scholar 

  • 46.

    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed?. Science 287, 857–859 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Stearns, S. C. The Evolution of Life Histories. 249 p. (Oxford University Press 1992)

  • 48.

    Viladrich, N. et al. Variations of lipid and free fatty acid contents during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35(3), 1033–1045. https://doi.org/10.1007/s00338-016-1440-1 (2016).

    ADS  Article  Google Scholar 

  • 49.

    Viladrich, N. et al. Variation of lipid and free fatty acid contents during larval release in two temperate octocorals according to their trophic strategy. Mar. Ecol. Prog. Ser. 573, 117–128. https://doi.org/10.3354/meps12141 (2017).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Santangelo, G., Bramanti, L. & Iannelli, M. Population dynamics and conservation biology of the overexploited Mediterranean Red coral. J. Theor. Biol. 244, 416–423 (2007).

    PubMed  Article  Google Scholar 

  • 51.

    Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycles of the gorgonians Paramuricea clavata and Eunicella singularis in the western Mediterranean. Mar. Biol. 151, 1571–1584 (2007).

    Article  Google Scholar 

  • 52.

    Caldwell, R. L. & Edmonds, D. A. The effects of sediment properties ondeltaic processes and morphologies: a numerical modeling study. J. Geophys. Res. Earth Surf. 119, 961–982. https://doi.org/10.1002/2013JF002965 (2014).

    ADS  Article  Google Scholar 

  • 53.

    Richmond, R. H. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93(4), 527–533 (1987).

    Article  Google Scholar 

  • 54.

    Huhn, K., Paul, A. & Seyferth, M. Modeling sediment transport patterns during an upwelling event. J. Geophys. Res. 112(C10003), 1. https://doi.org/10.1029/2005JC003107 (2007).

    Article  Google Scholar 

  • 55.

    Bakun, A. & Agostini, V. N. Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea. Sci. Mar. 65(3), 243–257 (2001).

    Article  Google Scholar 

  • 56.

    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).

    PubMed  Article  Google Scholar 

  • 57.

    Mokhtar-Jamaï, K. et al. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata. Ecol. Evol. 3(6), 1765–1779. https://doi.org/10.1002/ece3.588 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Pilczynska, J., Cocito, S., Boavida, J., Serrão, E. & Queiroga, H. Genetic diversity and local connectivity in the Mediterranean red gorgonian coral after mass mortality events. PLoS ONE 11(3), e0150590. https://doi.org/10.1371/journal.pone.0150590 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Padron, M., Costantini, F., Bramanti, L., Guizien, K. & Abbiati, M. Genetic connectivity fosters recovery of gorgonian populations impacted by climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 779–787. https://doi.org/10.1002/aqc.2912 (2018).

    Article  Google Scholar 

  • 60.

    Ledoux, J.-B. et al. Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus,1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol. Ecol. 19, 675–690 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Padron, M., Costantini, F., Baksay, S., Bramanti, L. & Guizien, K. Passive larval transport explains recent gene flow in a Mediterranean gorgonian. Coral Reefs 37, 495–506. https://doi.org/10.1007/s00338-018-1674-1 (2018).

    ADS  Article  Google Scholar 

  • 62.

    Selkoe, K. A. et al. A decade of seascape genetics: contributions tobasic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).

    ADS  Article  Google Scholar 

  • 63.

    Isomura, N. & Nishihira, M. Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20, 309–315 (2001).

    Article  Google Scholar 

  • 64.

    Hoegh-Guldberg, O. & Jones, R. J. Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar. Ecol. Prog. Ser. 183, 73–86 (1999).

    ADS  Article  Google Scholar 

  • 65.

    Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).

    Article  Google Scholar 

  • 66.

    Frost, B. W. Feeding processes at lower trophic levels in pelagic communities in The Biology of the Oceanic Pacific. 59–77 (Oregon State University Press 1974)

  • 67.

    Williamson, C. E. & Stoeckel, M. E. Estimating predation risk in zooplankton communities: the importance of vertical overlap. Hydrobiologia 198, 125–131 (1990).

    Article  Google Scholar 

  • 68.

    Almeda, R., van Someren Greve, H. & Kiørboe, T. Behavior is a major determinant of predation risk inzooplankton. Ecosphere 8(2), 1668. https://doi.org/10.1002/ecs2.1668 (2017).

    Article  Google Scholar 

  • 69.

    Moran, A. L. & Emlet, R. B. Offspring size and performance in variable environments: field studies on a marine snail. Ecology 82, 1597–1612 (2001).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate