in

A biphasic navigational strategy in loggerhead sea turtles

  • 1.

    Guilford, T. et al. Migratory navigation in birds: New opportunities in an era of fast-developing tracking technology. J. Exp. Biol. 214, 3705–3712 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Lohmann, K. J., Luschi, P. & Hays, G. C. Goal navigation and island-finding in sea turtles. J. Exp. Mar. Biol. Ecol. 356, 83–95 (2008).

    Article  Google Scholar 

  • 3.

    Kishkinev, D. Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies. J. Ornithol. 156, 145–161 (2015).

    Article  Google Scholar 

  • 4.

    Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Luschi, P. et al. Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles (Chelonia mydas). Behav. Ecol. Sociobiol. 50, 528–534 (2001).

    Article  Google Scholar 

  • 6.

    Benhamou, S., Bonadonna, F. & Jouventin, P. Successful homing of magnet-carrying white-chinned petrels released in the open sea. Anim. Behav. 65, 729–734 (2003).

    Article  Google Scholar 

  • 7.

    Wikelski, M. et al. True navigation in migrating gulls requires intact olfactory nerves. Sci. Rep. 5, 17061 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Luschi, P. Long-distance animal migrations in the oceanic environment: Orientation and navigation correlates. ISRN Zool. ID 631839 23, https://doi.org/10.1155/2013/631839 (2013).

  • 10.

    Papi, F., Luschi, P., Crosio, E. & Hughes, G. R. Satellite tracking experiments on the navigational ability and migratory behaviour of the loggerhead turtle Caretta caretta. Mar. Biol. 129, 215–220 (1997).

    Article  Google Scholar 

  • 11.

    Luschi, P., Papi, F., Liew, H. C., Chan, E. H. & Bonadonna, F. Long-distance migration and homing after displacement in the green turtle (Chelonia mydas): A satellite tracking study. J. Comp. Physiol. 178A, 447–452 (1996).

    Google Scholar 

  • 12.

    Luschi, P. et al. Satellite tracking of migrating loggerhead sea turtles (Caretta caretta) displaced in the open sea. Mar. Biol. 143, 793–801 (2003).

    Article  Google Scholar 

  • 13.

    Avens, L., Braun-McNeil, J., Epperly, S. P. & Lohmann, K. J. Site fidelity and homing behavior in juvenile loggerhead sea turtles (Caretta caretta). Mar. Biol. 143, 211–220 (2003).

    Article  Google Scholar 

  • 14.

    Girard, C., Sudre, J., Benhamou, S., Roos, D. & Luschi, P. Homing in green turtles Chelonia mydas: Oceanic currents act as a constraint rather than as an information source. Mar. Ecol. Prog. Ser. 322, 281–289 (2006).

    ADS  Article  Google Scholar 

  • 15.

    Benhamou, S. et al. The role of geomagnetic cues in green turtle open sea navigation. PLoS ONE 6, e26672 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Shimada, T. et al. Sea turtles return home after intentional displacement from coastal foraging areas. Mar. Biol. 163, 8 (2016).

    Article  CAS  Google Scholar 

  • 17.

    Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. & Swing, T. Geomagnetic map used in sea-turtle navigation. Nature 428, 909–910 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Bingman, V. P. & Cheng, K. Mechanisms of animal global navigation: Comparative perspectives and enduring challenges. Ethol. Ecol. Evol. 17, 295–318 (2006).

    Article  Google Scholar 

  • 19.

    Holland, R. A. True navigation in birds: from quantum physics to global migration. J. Zool. 293, 1–15 (2014).

    Article  Google Scholar 

  • 20.

    Hays, G. C. et al. Island-finding ability of marine turtles. Proc. R. Soc. Lond. B 270(Suppl. 1), 5–7 (2003).

    Google Scholar 

  • 21.

    Gaspar, P. et al. Marine animal behaviour: Neglecting ocean currents can lead us up the wrong track. Proc. R. Soc. Lond. B 273, 2697–2702 (2006).

    Google Scholar 

  • 22.

    Chapman, J. W. et al. Animal orientation strategies for movement in flows. Curr. Biol. 21, R861–R870 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Luschi, P. et al. Marine turtles use geomagnetic cues during open-sea homing. Curr. Biol. 17, 126–133 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Putman, N. F. & He, R. Tracking the long-distance dispersal of marine organisms: Sensitivity to ocean model resolution. J. R. Soc. Interface 10, 20120979 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Sea turtles compensate deflection of heading at the sea surface during directional travel. J. Exp. Biol. 212, 4019–4026 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Shiomi, K. et al. Data-processing artefacts in three-dimensional dive path reconstruction from geomagnetic and acceleration data. Aquat. Biol. 8, 299–304 (2010).

    Article  Google Scholar 

  • 27.

    Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Loggerhead turtles (Caretta caretta) use vision to forage on gelatinous prey in mid-water. PLoS ONE 8(6), e66043 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Fukuoka, T., Narazaki, T., Kinoshita, C. & Sato, K. Diverse foraging habits of juvenile green turtles (Chelonia mydas) in a summer-restricted foraging habitat in the northwest Pacific Ocean. Mar. Biol. 166, 25 (2019).

    Article  Google Scholar 

  • 29.

    Luschi, P. & Casale, P. Movement patterns of marine turtles in the Mediterranean Sea: a review. Ital. J. Zool. 81, 478–495 (2014).

    Article  Google Scholar 

  • 30.

    Türkozan, O., Taskavak, E. & Ilgaz, C. A review of the biology of the loggerhead turtle, Caretta caretta, at five major nesting beaches on the south-western Mediterranean coast of Turkey. J. Herpetol. 13, 27–34 (2003).

    Google Scholar 

  • 31.

    Canbolat, A. F. A review of sea turtle nesting activity along the Mediterranean coast of Turkey. Biol. Conserv. 116, 81–91 (2004).

    Article  Google Scholar 

  • 32.

    Papi, F., Liew, H. C., Luschi, P. & Chan, E. H. Long-range migratory travel of a green turtle tracked by satellite: Evidence for navigational ability in the open sea. Mar. Biol. 122, 171–175 (1995).

    Article  Google Scholar 

  • 33.

    Dujon, A. M., Schofield, G., Lester, R. E., Esteban, N. & Hays, G. C. Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles. Mar. Biol. 164, 187 (2017).

    Article  Google Scholar 

  • 34.

    Wallraff, H. G. Avian navigation: Pigeon homing as a paradigm (Springer, Berlin, 2005).

    Google Scholar 

  • 35.

    Giunchi, D., Pollonara, E. & Baldaccini, N. E. The influence of transport conditions on the initial orientation of sand martins (Riparia riparia). Ethol. Ecol. Evol. 15, 83–97 (2003).

    Article  Google Scholar 

  • 36.

    Parker, D. M. et al. Conservation considerations revealed by the movements of post-nesting green turtles from the Republic of the Marshall Islands. Micronesica 3, 1–9 (2015).

    CAS  Google Scholar 

  • 37.

    Hays, G. C., Cerritelli, G., Esteban, N., Rattray, A. & Luschi, P. Open ocean reorientation and challenges of island finding by sea turtles during long-distance migration. Curr. Biol. 30, 3236-3242.e3 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Hays, G. C. et al. Biphasal long-distance migration in green turtles. Anim. Behav. 64, 895–898 (2002).

    Article  Google Scholar 

  • 39.

    Broderick, A. C., Coyne, M., Fuller, W. J., Glen, F. & Godley, B. J. Fidelity and over-wintering of sea turtles. Proc. R. Soc. Lond. B 274, 1533–1538 (2007).

    Google Scholar 

  • 40.

    Hays, G. C. et al. Route optimisation and solving Zermelo’s navigation problem during long distance migration in cross flows. Ecol. Lett. 17, 137–143 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Hays, G. C., Mortimer, J. A., Ierodiaconou, D. & Esteban, N. Use of long-distance migration patterns of an endangered species to inform conservation planning for the world’s largest marine protected area. Conserv. Biol. 6, 1636–1644 (2014).

    Article  Google Scholar 

  • 42.

    Mingozzi, T., Mencacci, R., Cerritelli, G., Giunchi, D. & Luschi, P. Living between widely separated areas: Long-term monitoring of Mediterranean loggerhead turtles sheds light on cryptic aspects of females spatial ecology. J. Exp. Mar. Biol. Ecol. 485, 8–17 (2016).

    Article  Google Scholar 

  • 43.

    Mettler, E., Clyde-Brockway, C., Honarvar, S. & Paladino, F. V. Migratory corridor linking Atlantic green turtle, Chelonia mydas, nesting site on Bioko Island, Equatorial Guinea to Ghanaian foraging grounds. PlosONE 14(6), e0213231 (2019).

    CAS  Article  Google Scholar 

  • 44.

    Endres, C. S. et al. Multi-modal homing in sea turtles: Modeling dual use of geomagnetic and chemical cues in island-finding. Front. Behav. Neurosci. 10, 19 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Lohmann, K.J. & Lohmann, C.M.F. There and back again: natal homing by magnetic navigation in sea turtles and salmon. J. Exp. Biol. 222, jeb184077 (2019)

  • 46.

    Holland, R. A. et al. Testing the role of sensory systems in the migratory heading of a songbird. J. Exp. Biol. 212, 4065–4071 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Berthold, P. Spatiotemporal programmes and genetics of orientation. in Orientation in Birds (ed. Berthold, P.) 86–105 (Birkauser, Basel, 1991).

  • 48.

    Scott, R., Marsh, R. & Hays, G. C. Ontogeny of long distance migration. Ecology 95, 2840–2850 (2014).

    Article  Google Scholar 

  • 49.

    Cerritelli, G. et al. Assessing reliance on vector navigation in the long-distance oceanic migrations of green sea turtles. Behav. Ecol. 30, 68–79 (2019).

    Article  Google Scholar 

  • 50.

    Kaska, Y., Başkale, E., Katılmış, Y., Sözbilen, D. & Şirin, A. Monitoring and Conservation of Sea Turtles (Caretta caretta and Chelonia mydas) and soft-shelled Nile turtle (Trionyx triunguis) populations within the scope of Köyceðiz-Dalyan specially protected area- monitoring species and habitat project, 2018 (Turkish Ministry of Environment and Urbanization, Ankara, 2018).

    Google Scholar 

  • 51.

    Telonics 2017 Gen4 GPS Systems Manual, Document Number PB008383 Rev L Mesa, AZ.

  • 52.

    Luschi, P., Hays, G. C., Del Seppia, C., Marsh, R. & Papi, F. The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proc. R. Soc. Lond. B 265, 2279–2284 (1998).

    CAS  Article  Google Scholar 

  • 53.

    Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension?. J. Theor. Biol. 229, 209–220 (2004).

    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 54.

    Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Fisher, C.J. Using an accelerometer for inclination sensing. AN-1057, application note. Analog. Dev. 1–8 (2010)

  • 56.

    Batschelet, E. Circular Statistics in Biology (Academic Press, New York, 1981).

    Google Scholar 


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate