in

Marine plankton show threshold extinction response to Neogene climate change

  • 1.

    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).

    ADS  Google Scholar 

  • 2.

    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl. Acad. Sci. USA 113, 2964–2969 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).

    ADS  Google Scholar 

  • 5.

    Jensen, L. Ø., Mousing, E. A. & Richardson, K. Using species distribution modelling to predict future distributions of phytoplankton: case study using species important for the biological pump. Mar. Ecol. 38, e12427 (2017).

    ADS  Google Scholar 

  • 6.

    Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 1–8 (2017).

    Google Scholar 

  • 7.

    Lazarus, D., Barron, J., Renaudie, J., Diver, P. & Türke, A. Cenozoic planktonic marine diatom diversity and correlation to climate change. PLoS One 9, e84857 (2014).

  • 8.

    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    ADS  CAS  Google Scholar 

  • 9.

    Renaudie, J. & Lazarus, D. B. On the accuracy of paleodiversity reconstructions: a case study in Antarctic Neogene radiolarians. Paleobiology 39, 491–509 (2013).

    Google Scholar 

  • 10.

    Caron, D. A. Ocean science: the rise of Rhizaria. Nature 532, 444–445 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    PubMed  Google Scholar 

  • 13.

    Moreira, D. et al. Global eukaryote phylogeny: combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol. Phylogenet. Evol. 44, 255–266 (2007).

    CAS  PubMed  Google Scholar 

  • 14.

    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Gutierrez-Rodriguez, A. et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 13, 964–976 (2019).

    CAS  PubMed  Google Scholar 

  • 16.

    Lampitt, R. S., Salter, I. & Johns, D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob. Biogeochem. Cycles 23, 1–9 (2009).

    Google Scholar 

  • 17.

    Llopis Monferrer, N. et al. Estimating biogenic silica production of rhizaria in the global ocean. Global Biogeochem. Cycles 34, 1–13 (2020).

  • 18.

    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 081619–052818 (2020).

    Google Scholar 

  • 19.

    Lazarus, D. WoRMS Polycystina: world list of Polycystina (Radiolaria) (version 2019-03-05). In Species 2000 & ITIS Catalogue of Life [2020-01-10] Beta (eds Roskov, Y. et al.) (accessed 18 October 2019). Digital resource at www.catalogueoflife.org/col (2019).

  • 20.

    Boltovskoy, D., Kling, S. A., Takahashi, K. & BjØrklund, K. World atlas of distribution of recent Polycystina (Radiolaria). Palaeontol. Electron. 13, 1–230 (2010).

    Google Scholar 

  • 21.

    Boltovskoy, D. & Correa, N. Planktonic equatorial diversity troughs: fact or artifact? Latitudinal diversity gradients in radiolaria. Ecology 98, 112–124 (2017).

    PubMed  Google Scholar 

  • 22.

    Lazarus, D. B. The deep-sea microfossil record of macroevolutionary change in plankton and its study. Geol. Soc. Spec. Publ. 358, 141–166 (2011).

    ADS  Google Scholar 

  • 23.

    Longhurst, A. Ecological Geography of the Sea. (Academic Press, San Diego, 1998).

  • 24.

    Suzuki, N. & Not, F. Biology and ecology of radiolaria. In Marine Protists: Diversity and Dynamics. (eds. Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N. &Not, F.) 179–222 (Springer, Japan, 2015).

  • 25.

    Boltovskoy, D. Vertical distribution patterns of Radiolaria Polycystina (Protista) in the World Ocean: living ranges, isothermal submersion and settling shells. J. Plankton Res. 39, 330–349 (2017).

    Google Scholar 

  • 26.

    Casey, R. E., Spaw, J. M., & Kunze, F. R. Polycystine radiolarian distribution and enhancements related to oceanographic conditions in a hypothetical ocean. Am. Assoc. Pet. Geol. Bull. 66, 319–332 (1982).

  • 27.

    Kling, S. A. Relation of radiolarian distributions to subsurface hydrography in the North Pacific. Deep Res. Oceanogr. Abstr. 23, 1043–1058 (1976).

    ADS  Google Scholar 

  • 28.

    Sanfilippo, A., Westberg-Smith, M. & Riedel, W. Cenozoic radiolaria. In Plankton Stratigraphy (eds. Bolli, H. M., Perch-Nielsen, K., & Saunders, J. B.) (Cambridge University Press, Cambridge, 1985).

  • 29.

    Liu, J. et al. Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Sci. Adv. 5, eaau6060 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical pacific ocean. Science 344, 84–87 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Tian, J. et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: high resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337. Earth Planet. Sci. Lett. 499, 185–196 (2018).

    ADS  CAS  Google Scholar 

  • 32.

    Close, R. A., Evers, S. W., Alroy, J. & Butler, R. J. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).

    Google Scholar 

  • 33.

    Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 1–237 (1953).

    MathSciNet  MATH  Google Scholar 

  • 34.

    Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).

    Google Scholar 

  • 35.

    Kamikuri, S. I., Motoyama, I., Nishi, H. & Iwai, M. Neogene radiolarian biostratigraphy and faunal evolution rates in the eastern equatorial pacific ODP sites 845 and 1241. Acta Palaeontol. Pol. 54, 713–742 (2009).

    Google Scholar 

  • 36.

    Sandoval, M. I., Boltovskoy, D., Baxter, A. T. & Baumgartner, P. O. Neogene paleoceanography of the eastern equatorial Pacific based on the radiolarian record of IODP drill sites off Costa Rica. Geochem. Geophys. Geosyst. 18, 1–26 (2017).

    Google Scholar 

  • 37.

    Renaudie, J., Lazarus, D. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, a11 (2020).

    Google Scholar 

  • 38.

    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    Google Scholar 

  • 39.

    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    PubMed  Google Scholar 

  • 40.

    Holland, S. M. Ecological disruption precedes mass extinction. Proc. Natl. Acad. Sci. USA 113, 8349–8351 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 41.

    Foote, M. Perspective: evolutionary patterns in the fossil record. Evolution 50, 1–11 (1996).

    PubMed  Google Scholar 

  • 42.

    Boltovskoy, D. The range-through method and first-last appearance data in paleontological surveys. J. Paleontol. 62, 157–159 (1988).

    Google Scholar 

  • 43.

    Wiebe, P. H. & Boyd, S. H. Limits of Nematoscelis megalops in the northwestern Atlantic in relation to Gulf Stream cold core rings. I, Horizontal and vertical distributions. J. Mar. Res. 36, 119–142 (1978).

    Google Scholar 

  • 44.

    Boltovskoy, D. & Correa, N. Biogeography of Radiolaria Polycystina (Protista) in the world ocean. Prog. Oceanogr. 149, 82–105 (2016).

    ADS  Google Scholar 

  • 45.

    Masson-Delmotte, V. et al. Summary for policymakers. In Global Warming of 1.5°C: An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change.  (eds. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield) 1–32 (World Meteorological Organization, Geneva, 2018).

  • 46.

    Moore, K. J. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 113–1143 (2018).

    Google Scholar 

  • 47.

    Hull, P. Life in the aftermath of mass extinctions. Curr. Biol. 25, R941–R952 (2015).

    CAS  PubMed  Google Scholar 

  • 48.

    Langer, M. R., Weinmann, A. E., Lötters, S., Bernhard, J. M. & Rödder, D. Climate-driven range extension of Amphistegina (Protista, Foraminiferida): models of current and predicted future ranges. PLoS One 8, e54443 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).

    PubMed  Google Scholar 

  • 50.

    Thierstein, H. R. Terminal Cretaceous plankton extinctions: a critical assessment. Spec. Pap. Geol. Soc. Am. 190, 385–399 (1982).

    Google Scholar 

  • 51.

    Lewandowska, A. M. et al. Scale dependence of temporal biodiversity change in modern and fossil marine plankton. Glob. Ecol. Biogeogr. 29, 1008–1019 (2020).

    Google Scholar 

  • 52.

    Broecker, W. S. & Peng, T. H. Tracers in the Sea (Eldigio Press, 1982).

  • 53.

    Brown, J. et al. Ocean Circulation (Pergamon Press, The Open University, 1989).

  • 54.

    Spencer-Cervato, C. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune Database. Palaeontol. Electron. 2, 1–38 (1999).

    Google Scholar 

  • 55.

    Nigrini, C. & Caulet, J. Late Neogene radiolarian assemblages characteristic of Indo-Pacific areas of upwelling. Micropaleontology 38, 139–164 (1992).

    Google Scholar 

  • 56.

    McGowan, J. A. The nature of oceanic ecosystems. In The Biology of the Oceanic Pacific—Proceedings of the 33rd Annual Biology Colloquium (ed. Miller, C. B.) 9–28 (Oregon State University, 1974).

  • 57.

    Pierrot-Bults, A. C., Van Der Spoel, S., Zahuranec, B. J. & Johnson, R. K. Pelagic Biogeography (UNESCO, 1986).

  • 58.

    Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer Verlag, 1989).

  • 59.

    Kucera, M. Planktonic foraminifera as tracers of past oceanic environments. In Proxies in Late Cenozoic Paleoceanography (eds. Hillaire-Marcel, C. & de Vernal, A.) 213–262 (Elsevier, 2007).

  • 60.

    Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Resour. 15, 1472–1485 (2015).

    CAS  PubMed  Google Scholar 

  • 61.

    Ishitani, Y., Ujiié, Y. & Takishita, K. Uncovering sibling species in Radiolaria: evidence for ecological partitioning in a marine planktonic protist. Mol. Phylogenet. Evol. 78, 215–222 (2014).

    PubMed  Google Scholar 

  • 62.

    Ishitani, Y. & Takishita, K. Molecular evidence for wide vertical distribution of the marine planktonic protist Larcopyle buetschlii (Radiolaria) in a semi-enclosed marginal sea. J. Plankton Res. 37, 851–856 (2015).

    CAS  Google Scholar 

  • 63.

    Moore, T. C. Method of randomly distributing grains for microscopic examination. J. Sediment. Petrol. 43, 904–906 (1973).

    Google Scholar 

  • 64.

    Palike, H., et al. Expedition 320/321 scientists. Site U1337. Proc. Integr. Ocean Drill. Progr. 320/321, 1–146 (2010).

  • 65.

    Lazarus, D. B., Renaudie, J., Lenz, D., Diver, P. & Klump, J. Raritas: a program for counting high diversity categorical data with highly unequal abundances. PeerJ 6, e5453 (2018).

  • 66.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  • 67.

    Kocsis, Á. T., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).

    Google Scholar 

  • 68.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 69.

    Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).

  • 70.

    Foote, M. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26, 74–102 (2000).

    Google Scholar 

  • 71.

    Warnock, R. C. M., Heath, T. A. & Stadler, T. Assessing the impact of incomplete species sampling on estimates of speciation and extinction rates. Paleobiology 46, 137–157 (2020).

    Google Scholar 

  • 72.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137 (R Found., Vienna, 2018).

  • 73.

    Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54, 426–482 (1943).

    MathSciNet  MATH  Google Scholar 


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate