in

Plastic, nutrition and pollution; relationships between ingested plastic and metal concentrations in the livers of two Pachyptila seabirds

  • 1.

    Law, K. L. et al. Distribution of surface plastic debris in the eastern pacific ocean from an 11-year data set. Environ. Sci. Technol. 48, 4732–4738. https://doi.org/10.1021/es4053076 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Naser, H. A. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar. Pollut. Bull. 72, 6–13. https://doi.org/10.1016/j.marpolbul.2013.04.030 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Meng, W., Qin, Y., Zheng, B. & Zhang, L. Heavy metal pollution in Tianjin Bohai Bay, China. J. Environ. Sci. 20, 814–819. https://doi.org/10.1016/S1001-0742(08)62131-2 (2008).

    CAS  Article  Google Scholar 

  • 4.

    Rainbow, P. S. Bioaccumulation of trace metals: biological significance. Oceanis 25, 547–561 (1999).

    CAS  Google Scholar 

  • 5.

    Reeder, R. J., Schoonen, M. A. & Lanzirotti, A. Metal speciation and its role in bioaccessibility and bioavailability. Rev. Mineral. Geochem. 64, 59–113 (2006).

    CAS  Article  Google Scholar 

  • 6.

    Kastury, F., Karna, R. R., Scheckel, K. G. & Juhasz, A. L. Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids. Environ. Pollut., 114609 (2020).

  • 7.

    Kastury, F. et al. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: Uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. Environ. Int. 131, 104967 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Ryan, P. G. Handbook of Environmental Chemistry 78, 235–266 (2019).

    ADS  Google Scholar 

  • 9.

    Holmes, L. A., Turner, A. & Thompson, R. C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 160, 42–48. https://doi.org/10.1016/j.envpol.2011.08.052 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Holmes, L. A., Turner, A. & Thompson, R. C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 167, 25–32. https://doi.org/10.1016/j.marchem.2014.06.001 (2014).

    CAS  Article  Google Scholar 

  • 11.

    Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003 (2016).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Vedolin, M. C., Teophilo, C. Y. S., Turra, A. & Figueira, R. C. L. Spatial variability in the concentrations of metals in beached microplastics. Mar. Pollut. Bull. 129, 487–493. https://doi.org/10.1016/j.marpolbul.2017.10.019 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Shen, K. K., Kochesfahani, S. & Jouffret, F. Zinc borates as multifunctional polymer additives. Polym. Adv. Technol. 19, 469–474. https://doi.org/10.1002/pat.1119 (2008).

    CAS  Article  Google Scholar 

  • 14.

    Lu, K., Qiao, R., An, H. & Zhang, Y. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 202, 514–520. https://doi.org/10.1016/j.chemosphere.2018.03.145 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Mallory, M. L., Robinson, S. A., Hebert, C. E. & Forbes, M. R. Seabirds as indicators of aquatic ecosystem conditions: a case for gathering multiple proxies of seabird health. Mar. Pollut. Bull. 60, 7–12. https://doi.org/10.1016/j.marpolbul.2009.08.024 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Furness, R. W. & Camphuysen, K. Seabirds as monitors of the marine environment. ICES J. Mar. Sci. 54, 726–737. https://doi.org/10.1006/jmsc.1997.0243 (1997).

    Article  Google Scholar 

  • 17.

    Elliott, J. E. Trace metals, stable isotope ratios, and trophic relations in seabirds from the North Pacific Ocean. Environ. Toxicol. Chem. 24, 3099–3105. https://doi.org/10.1897/04-474R.1 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Kim, E. Y., Goto, R., Tanabe, S., Tanaka, H. & Tatsukawa, R. Distribution of 14 elements in tissues and organs of oceanic seabirds. Arch. Environ. Contam. Toxicol. 35, 638–645. https://doi.org/10.1007/s002449900426 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Murphy, M. E. in Avian energetics and nutritional ecology 31–60 (Springer, 1996).

  • 20.

    McCue, M. D. Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 156, 1–18. https://doi.org/10.1016/j.cbpa.2010.01.002 (2010).

    CAS  Article  Google Scholar 

  • 21.

    Cherel, Y., Robin, J.-P. & Maho, Y. L. Physiology and biochemistry of long-term fasting in birds. Can. J. Zool. 66, 159–166 (1988).

    CAS  Article  Google Scholar 

  • 22.

    Richards, M. P., Rosebrough, R. W. & Steele, N. C. Effects of starvation and refeeding on tissue zinc, copper and iron in turkey poults. J. Nutr. 117, 481–489. https://doi.org/10.1093/jn/117.3.481 (1987).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Debacker, V., Rutten, A., Jauniaux, T., Daemers, C. & Bouquegneau, J. M. Combined effects of experimental heavy-metal contamination (Cu, Zn, and CH3Hg) and starvation on quail’s body condition: parallelism with a wild common guillemot (Uria aalge) population found stranded at the Belgian coast. Biol. Trace Elem. Res. 82, 87–107. https://doi.org/10.1385/bter:82:1-3:087 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Wenzel, C. & Adelung, D. The suitability of oiled guillemots (Uria aalge) as monitoring organisms for geographical comparisons of trace element contaminants. Arch. Environ. Contam. Toxicol. 31, 368–377. https://doi.org/10.1007/BF00212675 (1996).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Brady, L. J., Romsos, D. R., Brady, P. S., Bergen, W. G. & Leveille, G. A. The effects of fasting on body composition, glucose turnover, enzymes and metabolites in the chicken. J. Nutr. 108, 648–657 (1978).

    CAS  Article  Google Scholar 

  • 26.

    McCauley, S. J. & Bjorndal, K. A. Conservation implications of dietary dilution from debris ingestion: sublethal effects in post-hatchling loggerhead sea turtles. Conserv. Biol. 13, 925–929. https://doi.org/10.1046/j.1523-1739.1999.98264.x (1999).

    Article  Google Scholar 

  • 27.

    Raubenheimer, D. & Simpson, S. J. in Encyclopedia of Animal Behavior (Second Edition) (ed Jae Chun Choe) 127–138 (Academic Press, London, 2019).

  • 28.

    Santos, R. G. et al. Exploring plastic-induced satiety in foraging green turtles. Environ. Pollut., 114918 (2020).

  • 29.

    Lavers, J. L., Bond, A. L. & Hutton, I. Plastic ingestion by flesh-footed shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187, 124–129. https://doi.org/10.1016/j.envpol.2013.12.020 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Puskic, P. S., Lavers, J. L., Adams, L. R. & Bond, A. L. Ingested plastic and trace element concentrations in short-tailed shearwaters (Ardenna tenuirostris). Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111143 (2020).

    Article  PubMed  Google Scholar 

  • 31.

    Lavers, J. L. & Bond, A. L. Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Mar. Pollut. Bull. 110, 493–500. https://doi.org/10.1016/j.marpolbul.2016.06.001 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Ishii, C. et al. Contamination status and accumulation characteristics of heavy metals and arsenic in five seabird species from the central Bering Sea. J. Vet. Med. Sci. 79, 807–814. https://doi.org/10.1292/jvms.16-0441 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Ishii, C. et al. Heavy metal pollution in Japanese seabirds. Jpn. J. Vet. Res. 61, S75–S76 (2013).

    PubMed  Google Scholar 

  • 34.

    Burger, J. & Gochfeld, M. Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Sci. Total Environ. 257, 37–52. https://doi.org/10.1016/S0048-9697(00)00496-4 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 35.

    Ashton, K., Holmes, L. & Turner, A. Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 60, 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Honda, K., Marcovecchio, J. E., Kan, S., Tatsukawa, R. & Ogi, H. Metal concentrations in pelagic seabirds from the North Pacific Ocean. Arch. Environ. Contam. Toxicol. 19, 704–711. https://doi.org/10.1007/BF01183988 (1990).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Muirhead, S. J. & Furness, R. W. Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Mar. Pollut. Bull. 19, 278–283. https://doi.org/10.1016/0025-326X(88)90599-1 (1988).

    CAS  Article  Google Scholar 

  • 38.

    Lock, J. W., Thompson, D. R., Furness, R. W. & Bartle, J. A. Metal concentrations in seabirds of the New Zealand region. Environ. Pollut. 75, 289–300. https://doi.org/10.1016/0269-7491(92)90129-X (1992).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Turner, A. Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar. Pollut. Bull. 111, 136–142. https://doi.org/10.1016/j.marpolbul.2016.07.020 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Davranche, M. et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 249, 940–948. https://doi.org/10.1016/j.envpol.2019.03.087 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Turner, A. Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test. Environ. Pollut. 236, 1020–1026. https://doi.org/10.1016/j.envpol.2018.01.023 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Burger, J. & Gochfeld, M. Mercury and other metals in feathers of common eider (Somateria mollissima) and tufted puffin (Fratercula cirrhata) from the Aleutian chain of Alaska. Arch. Environ. Contam. Toxicol. 56, 596–606. https://doi.org/10.1007/s00244-008-9207-5 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Roman, L., Hardesty, B. D., Hindell, M. A. & Wilcox, C. A quantitative analysis linking seabird mortality and marine debris ingestion. Sci. Rep. https://doi.org/10.1038/s41598-018-36585-9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Pierce, K. E., Harris, R. J., Larned, L. S. & Pokras, M. A. Obstruction and starvation associated with plastic ingestion in a Northern Gannet Morus bassanus and a greater shearwater Puffinus gravis. Mar. Ornithol. 32, 187–189 (2004).

    Google Scholar 

  • 45.

    Rochman, C. M. et al. The ecological impacts of marine debris: Unraveling the demonstrated evidence from what is perceived. Ecology 97, 302–312. https://doi.org/10.1890/14-2070.1 (2016).

    Article  PubMed  Google Scholar 

  • 46.

    Tanaka, K. et al. (2013) Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. http://doi.org/https://doi.org/10.1016/j.marpolbul.2012.12.010 (2013).

  • 47.

    Marchant, S. & Higgins, P. J. Handbook of Australian, New Zealand and Antarctic Birds 1 Part A ( Oxford University Press, Ratites to Ducks, 1990).

    Google Scholar 

  • 48.

    Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiforme seabirds Sci. Rep. (2019).

  • 49.

    Powlesland, R. G. Seabirds found dead on New Zealand beaches in 1986 and a review of Pachyptila species recoveries since 1960. Notornis 36 (1989).

  • 50.

    Veitch, C. Seabirds found dead in New Zealand in 1979. Notornis 28, 41–47 (1981).

    Google Scholar 

  • 51.

    Post, P. W. Observations of prion (Pachyptila) wrecks on the west coast of South America. Notornis 54, 220–225 (2007).

    Google Scholar 

  • 52.

    Martuscelli, P. & Olmos, F. A large prion Pachyptila wreck in south-east Brazil. Cotinga 8, 55–57 (1997).

    Google Scholar 

  • 53.

    Davidson, N. & Evans, P. Mortality of Redshanks and Oystercatchers from starvation during severe weather. Bird Study 29, 183–188 (1982).

    Article  Google Scholar 

  • 54.

    van Franeker, J. Save the North Sea Fulmar-Litter-EcoQO Manual Part 1: Collection and dissection procedures. Vol. 672 (2004).

  • 55.

    Kastury, F. et al. In vitro, in vivo, and spectroscopic assessment of lead exposure reduction via ingestion and inhalation pathways using phosphate and iron amendments. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b02448 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Environmental Protection Agency, U. S. A. Method 6020A Inductively coupled plasma – mass spectrometry. (1998).

  • 57.

    R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org (2018).

  • 58.

    Naimi, B. Package ‘usdm’, R package version 1.1–18. (2017).

  • 59.

    Barton, K. Package ‘MuMIn’. R package version 1.43.17. (2019).

  • 60.

    Anderson, D. & Burnham, K. Model Selection and Multi-Model Inference 2nd edn, 63 (Springer, New York, 2004).

    Google Scholar 

  • 61.

    Burnham, K. & Anderson, D. A practical information-theoretic approach, in Model Selection and mUltimodel Inference, 2nd ed. (Springer, New York, 2002).

  • 62.

    Totzke, U. et al. The influence of fasting on blood and plasma composition of herring gulls (Larus argentatus). Physiol. Biochem. Zool. Ecol. Evol. Approac. 72, 426–437. https://doi.org/10.1086/316675 (1999).

    CAS  Article  Google Scholar 

  • 63.

    McKnight, G. S., Lee, D. C., Hemmaplardh, D., Finch, C. A. & Palmiter, R. D. Transferrin gene expression. effects of nutritional iron deficiency. J. Biol. Chem. 255, 144–147 (1980).

    CAS  PubMed  Google Scholar 

  • 64.

    Urien, N. et al. Subcellular partitioning of metals and metalloids (As, Cd, Cu, Se and Zn) in liver and gonads of wild white suckers (Catostomus commersonii) collected downstream from a mining operation. Aquat. Toxicol. 202, 105–116. https://doi.org/10.1016/j.aquatox.2018.07.001 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Krężel, A. & Maret, W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 18, 1237. https://doi.org/10.3390/ijms18061237 (2017).

    CAS  Article  PubMed Central  Google Scholar 

  • 66.

    Rainbow, P. S. Copper, cadmium and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. Mar. Biol. 103, 513–518. https://doi.org/10.1007/BF00399583 (1989).

    CAS  Article  Google Scholar 

  • 67.

    Cherel, Y., Robin, J.-P., Heitz, A., Calgari, C. & Le Maho, Y. Relationships between lipid availability and protein utilization during prolonged fasting. J. Comput. Physiol. B. 162, 305–313 (1992).

    CAS  Article  Google Scholar 

  • 68.

    Kojadinovic, J., Corre, M. L., Cosson, R. P. & Bustamante, P. Trace elements in three marine birds breeding on Reunion Island (Western Indian Ocean): part 1 – factors influencing their bioaccumulation. Arch. Environ. Contam. Toxicol. 52, 418–430. https://doi.org/10.1007/s00244-005-0225-2 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 69.

    Stewart, F. M., Phillips, R. A., Bartle, J. A., Craig, J. & Shooter, D. Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar. Ecol. Prog. Ser. 178, 295–305. https://doi.org/10.3354/meps178295 (1999).

    ADS  CAS  Article  Google Scholar 

  • 70.

    Fromant, A. et al. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean. Sci. Total Environ. 544, 754–764. https://doi.org/10.1016/j.scitotenv.2015.11.114 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 71.

    Van Franeker, J. A. & Law, K. L. Seabirds, gyres and global trends in plastic pollution. Environ. Pollut. 203, 89–96. https://doi.org/10.1016/j.envpol.2015.02.034 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Ryan, P. G. How quickly do albatrosses and petrels digest plastic particles?. Environ. Pollut. 207, 438–440. https://doi.org/10.1016/j.envpol.2015.08.005 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Thouzeau, C., Robin, J.-P., Le Maho, Y. & Handrich, Y. Body reserve dynamics and energetics of barn owls during fasting in the cold. J. Comput. Physiol. B. 169, 612–620 (1999).

    Article  Google Scholar 

  • 74.

    Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female common eiders nesting in the high arctic. Auk 107, 660–668 (1990).

    Article  Google Scholar 

  • 75.

    Esselink, H. et al. Biomonitoring heavy metals using the barn owl (Tyto alba guttata): sources of variation especially relating to body condition. Arch. Environ. Contam. Toxicol. 28, 471–486 (1995).

    CAS  Article  Google Scholar 

  • 76.

    Raiswell, R., Benning, L. G., Tranter, M. & Tulaczyk, S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem. Trans. 9, 7 (2008).

    Article  Google Scholar 

  • 77.

    Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).

    ADS  CAS  Article  Google Scholar 

  • 78.

    De Baar, H. J. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415 (1995).

    ADS  Article  Google Scholar 

  • 79.

    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Res. II 44, 209–227. https://doi.org/10.1016/S0967-0645(96)00074-4 (1997).

    ADS  CAS  Article  Google Scholar 

  • 80.

    Bannon, D. I., Abounader, R., Lees, P. S. J. & Bressler, J. P. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am. J. Physiol. Cell Physiol. 284, C44–C50 (2003).

    CAS  Article  Google Scholar 

  • 81.

    Bressler, J. P., Olivi, L., Cheong, J. H., Kim, Y. & Bannona, D. Divalent metal transporter 1 in lead and cadmium transport. Ann. N. Y. Acad. Sci. 1012, 142–152. https://doi.org/10.1196/annals.1306.011 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 82.

    Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiform Seabirds. Sci. Rep. http://doi.org/https://doi.org/10.1038/s41598-018-37324-w (2019).

  • 83.

    Ryan, P. G. The incidence and characteristics of plastic particles ingested by seabirds. Mar. Environ. Res. 23, 175–206. https://doi.org/10.1016/0141-1136(87)90028-6 (1987).

    Article  Google Scholar 

  • 84.

    Ainley, D. G., Fraser, W. R. & Spear, L. B. The incidence of plastic in the diets of Antarctic seabirds. Second International Conference on Marine Debris, 2–7 April 1989 (1990).

  • 85.

    Avery-Gomm, S. et al. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific. Mar. Pollut. Bull. 64, 1776–1781. https://doi.org/10.1016/j.marpolbul.2012.04.017 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 86.

    Terepocki, A. K., Brush, A. T., Kleine, L. U., Shugart, G. W. & Hodum, P. Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea). Mar. Pollut. Bull. 116, 143–150. https://doi.org/10.1016/j.marpolbul.2016.12.064 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 87.

    Youngren, S. M., Rapp, D. C. & Hyrenbach, K. D. Plastic ingestion by Tristram’s Storm-petrel (Oceanodroma tristrami) chicks from French frigate shoals, Northwestern Hawaiian Islands. Mar. Pollut. Bull. 128, 369–378. https://doi.org/10.1016/j.marpolbul.2018.01.053 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 88.

    GIMP Development Team. GIMP 2.10.10, https://www.gimp.org/ (2019).


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate