in

Ocean acidification disrupts the orientation of postlarval Caribbean spiny lobsters

  • 1.

    Yates, K. K., Dufore, C., Smiley, N., Jackson, C. & Halley, R. B. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Mar. Chem. 104(1–2), 110–124. https://doi.org/10.1016/j.marchem.2006.12.008 (2007).

    CAS  Article  Google Scholar 

  • 2.

    Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: The other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13. https://doi.org/10.1016/j.ecss.2014.05.027 (2014).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change. 5(3), 207–214. https://doi.org/10.1038/nclimate2508 (2015).

    ADS  Article  Google Scholar 

  • 4.

    Millero, F. J., Hiscock, W. T., Huang, F., Roche, M. & Zhang, J. Z. Seasonal variation of the carbonate system in Florida Bay. Bull. Mar. Sci. 68(1), 101–123 (2001).

    Google Scholar 

  • 5.

    Manzello, D. P., Enochs, I. C., Melo, N., Gledhill, D. K. & Johns, E. M. Ocean acidification refugia of the Florida Reef Tract. PLoS ONE 7(7), 41715. https://doi.org/10.1371/journal.pone.0041715 (2012).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Enochs, I. C., Manzello, D. P., Jones, P. R., Stamates, S. J. & Carsey, T. P. Seasonal carbonate chemistry dynamics on southeast Florida coral reefs: Localized acidification hotspots from navigational inlets. Front. Mar. Sci. 6, 160. https://doi.org/10.3389/fmars.2019.00160 (2019).

    Article  Google Scholar 

  • 7.

    Cyronak, T. et al. Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnol. Oceanogr. Lett. 5(2), 193–203. https://doi.org/10.1002/lol2.10129 (2020).

    Article  Google Scholar 

  • 8.

    Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271. https://doi.org/10.3354/meps09185 (2011).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504(7478), 61–70. https://doi.org/10.1038/nature12857 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    IPCC, IPOCC. Special report on global warming of 1.5 °C (SR15, 2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

  • 11.

    Munday, P. L., McCormick, M. I. & Nilsson, G. E. Impact of global warming and rising CO2 levels on coral reef fishes: What hope for the future?. J. Exp. Biol. 215(22), 3865–3873. https://doi.org/10.1242/jeb.074765 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Gravinese, P. M. Ocean acidification impacts the embryonic development and hatching success of the Florida stone crab, Menippe mercenaria. J. Exp. Mar. Biol. Ecol. 500, 140–146. https://doi.org/10.1016/j.jembe.2017.09.001 (2018).

    CAS  Article  Google Scholar 

  • 13.

    Gravinese, P. M. Vertical swimming behavior in larvae of the Florida stone crab, Menippe mercenaria. J. Plankton Res. 40(6), 643–654. https://doi.org/10.1093/plankt/fby040 (2018).

    Article  Google Scholar 

  • 14.

    Gravinese, P. M., Enochs, I. C., Manzello, D. P. & van Woesik, R. Ocean acidification changes the vertical movement of stone crab larvae. Biol. Lett. 15(12), 20190414. https://doi.org/10.1098/rsbl.2019.0414 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Paganini, A. W., Miller, N. A. & Stillman, J. H. Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 217(22), 3974–3980. https://doi.org/10.1242/jeb.109801 (2014).

    Article  PubMed  Google Scholar 

  • 16.

    Ceballos-Osuna, L., Carter, H. A., Miller, N. A. & Stillman, J. H. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216(8), 1405–1411. https://doi.org/10.1242/jeb.078154 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Giltz, S. M. & Taylor, C. M. Reduced growth and survival in the larval blue crab Callinectes sapidus under predicted ocean acidification. J. Shellfish Res. 36(2), 481–485. https://doi.org/10.2983/035.036.0219 (2017).

    Article  Google Scholar 

  • 18.

    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37(12), 1131–1134. https://doi.org/10.1130/G30210A.1 (2009).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Wang, T. & Wang, Y. Behavioral responses to ocean acidification in marine invertebrates: New insights and future directions. J. Oceanol. Limnol. 38(3), 1–14. https://doi.org/10.1007/s00343-019-9118-5 (2019).

    MathSciNet  CAS  Article  Google Scholar 

  • 20.

    Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N. Sensory Biology of Aquatic Animals (Springer, Berlin, 1988).

    Google Scholar 

  • 21.

    Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70(1), 309–340 (2002).

    Google Scholar 

  • 22.

    Arvedlund, M. & Kavanagh, K. The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 135–185 (Springer, Berlin, 2009).

    Google Scholar 

  • 23.

    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. 106(6), 1848–1852. https://doi.org/10.1073/pnas.0809996106 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 24.

    Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13(1), 68–75. https://doi.org/10.1111/j.1461-0248.2009.01400.x (2010).

    Article  PubMed  Google Scholar 

  • 25.

    Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Glob. Change Biol. 22(3), 974–989. https://doi.org/10.1111/gcb.13167 (2016).

    ADS  Article  Google Scholar 

  • 26.

    Ashur, M. M., Johnston, N. K. & Dixson, D. L. Impacts of ocean acidification on sensory function in marine organisms. Integr. Comp. Biol. 57(1), 63–80. https://doi.org/10.1093/icb/icx010 (2017).

    Article  PubMed  Google Scholar 

  • 27.

    Ross, E. & Behringer, D. Changes in temperature, pH, and salinity affect the sheltering responses of Caribbean spiny lobsters to chemosensory cues. Sci. Rep. 9(1), 4375. https://doi.org/10.1038/s41598-019-40832-y (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Brown, G. E., Adrian, J. C. Jr., Lewis, M. G. & Tower, J. M. The effects of reduced pH on chemical alarm signaling in ostariophysan fishes. Can. J. Fish. Aquat. Sci. 59(8), 1331–1338. https://doi.org/10.1139/f02-104 (2002).

    CAS  Article  Google Scholar 

  • 29.

    de la Haye, K. L., Spicer, J. I., Widdicombe, S. & Briffa, M. Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. J. Anim. Behav. 82(3), 495–501. https://doi.org/10.1016/j.anbehav.2011.05.030 (2011).

    Article  Google Scholar 

  • 30.

    Tierney, A. J. & Atema, J. Amino acid chemoreception: Effects of pH on receptors and stimuli. J. Chem. Ecol. 14(1), 135–141. https://doi.org/10.1007/BF01022537 (1988).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Mar. Poll. Bull. 64(8), 1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032 (2012).

    CAS  Article  Google Scholar 

  • 32.

    Goldstein, J. S. & Butler, M. J. IV. Behavioral enhancement of onshore transport by postlarval Caribbean spiny lobster (Panulirus argus). Limnol. Oceanogr. 54(5), 1669–1678. https://doi.org/10.4319/lo.2009.54.5.1669 (2009).

    ADS  Article  Google Scholar 

  • 33.

    Zito-Livingston, A. N. & Childress, M. J. Does conspecific density influence the settlement of Caribbean spiny lobster Panulirus argus postlarvae?. N. Z. J. Mar. Freshw. Res. 43(1), 313–325 (2009).

    Google Scholar 

  • 34.

    Ratchford, S. G. & Eggleston, D. B. Size- and scale-dependent chemical attraction contribute to an ontogenetic shift in sociality. Anim. Behav. 56(4), 1027–1034. https://doi.org/10.1006/anbe.1998.0869 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Nevitt, G., Pentcheff, N. D., Lohmann, K. J. & Den Zimmer, R. K. selection by the spiny lobster Panulirus argus: Testing attraction to conspecific odors in the field. Mar. Ecol. Prog. Ser. 203, 225–231. https://doi.org/10.3354/meps203225 (2000).

    ADS  Article  Google Scholar 

  • 36.

    Behringer, D. C., Butler, M. J. IV. & Shields, J. D. Avoidance of disease by social lobsters. Nature 441(7092), 421. https://doi.org/10.1038/441421a (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 37.

    Anderson, J. R. & Behringer, D. C. Spatial dynamics in the social lobster Panulirus argus in response to diseased conspecifics. Mar. Ecol. Prog. Ser. 474, 191–200. https://doi.org/10.3354/meps10091 (2013).

    ADS  Article  Google Scholar 

  • 38.

    Butler, M. J. IV. et al. Cascading disturbances in Florida Bay, USA: Cyanobacteria blooms, sponge mortality, and implications for juvenile spiny lobsters Panulirus argus. Mar. Ecol. Prog. Ser. 129, 119–125. https://doi.org/10.3354/meps129119 (1995).

    ADS  Article  Google Scholar 

  • 39.

    Ginsburg, R. N. & Shinn, E. A. Preferential distribution of reefs in the Florida reef tract: The past is the key to the present. Oceanogr. Lit. Rev. 8(42), 674 (1995).

    Google Scholar 

  • 40.

    Zhang, J. Z. & Fischer, C. J. Carbon dynamics of Florida Bay: Spatiotemporal patterns and biological control. Environ. Sci. Technol. 48(16), 9161–9169. https://doi.org/10.1021/es500510z (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 41.

    Toth, L. T., Kuffner, I. B., Stathakopoulos, A. & Shinn, E. A. A 3000-year lag between the geological and ecological shutdown of Florida’s coral reefs. Glob. Change Biol. 24(11), 5471–5483. https://doi.org/10.1111/gcb.14389 (2018).

    ADS  Article  Google Scholar 

  • 42.

    Marx, J. M. & Herrnkind, W. F. Macroalgae (Rhodophyta: Laurencia spp.) as habitat for young juvenile spiny lobsters, Panulirus argus. Bull. Mar. Sci. 36(3), 423–431 (1985).

    Google Scholar 

  • 43.

    Butler, M. J. IV. & Herrnkind, W. F. Effect of benthic microhabitat cues on the metamorphosis of postlarvae of the spiny lobster Panulirus argus. J. Crustac. Biol. 11(1), 23–28. https://doi.org/10.2307/1548541 (1991).

    Article  Google Scholar 

  • 44.

    Herrnkind, W. F. & Butler, M. J. Factors regulating postlarval settlement and juvenile microhabitat use by spiny lobsters Panulirus argus. Mar. Ecol. Progr. Ser. 34, 23–30 (1986).

    ADS  Article  Google Scholar 

  • 45.

    FAO. Food and Agriculture Organization Fisheries and aquaculture report (ISSN 2070–6987) 124 (FAO, 2015).

  • 46.

    Lapointe, B. E. & Matzie, W. R. Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries 19(2), 422–435. https://doi.org/10.2307/1352460 (1996).

    CAS  Article  Google Scholar 

  • 47.

    Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4(11), 766–770. https://doi.org/10.1038/ngeo1297 (2011).

    ADS  CAS  Article  Google Scholar 

  • 48.

    de la Haye, K. L., Spicer, J. I., Widdicombe, S. & Briffa, M. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J. Exp. Biol. Ecol. 412, 134–140. https://doi.org/10.1016/j.jembe.2011.11.013 (2012).

    CAS  Article  Google Scholar 

  • 49.

    Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J. Mar. Sci. 68(6), 1147–1154. https://doi.org/10.1093/icesjms/fsq188 (2011).

    Article  Google Scholar 

  • 50.

    Pörtner, H. O., Langenbuch, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60(4), 705–718. https://doi.org/10.1007/s10872-004-5763-0 (2004).

    Article  Google Scholar 

  • 51.

    Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9. https://doi.org/10.3354/meps334001 (2007).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Small, D. P. et al. The effects of elevated temperature and pCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus. J. Exp. Biol. https://doi.org/10.1242/jeb.209221 (2020).

    Article  PubMed  Google Scholar 

  • 53.

    Morris, S., Greenaway, P. & McMahon, B. Air breathing by the purple shore crab, Hemigrapsus nudus (Dana). II. Respiratory gas and acid-base status in response to emersion. Physiol. Zool. 69(4), 806–838. https://doi.org/10.1086/physzool.69.4.30164231 (1996).

    CAS  Article  Google Scholar 

  • 54.

    Schmitt, B. C. & Ache, B. W. Olfaction: responses of a decapod crustacean are enhanced by flicking. Science 205(4402), 204–206. https://doi.org/10.1126/science.205.4402.204 (1979).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 55.

    Goldman, J. A. & Koehl, M. A. R. Fluid dynamic design of lobster olfactory organs: High speed kinematic analysis of antennule flicking by Panulirus argus. Chem. Senses 26(4), 385–398. https://doi.org/10.1093/chemse/26.4.385 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Reidenbach, M. A., George, N. & Koehl, M. A. R. Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. J. Exp. Biol. 211(17), 2849–2858. https://doi.org/10.1242/jeb.016394 (2008).

    Article  PubMed  Google Scholar 

  • 57.

    Lürling, M. & Scheffer, M. Info-disruption: Pollution and the transfer of chemical information between organisms. Trends Ecol. Evol. 22(7), 374–379. https://doi.org/10.1016/j.tree.2007.04.002 (2007).

    Article  PubMed  Google Scholar 

  • 58.

    Bednaršek, N. et al. Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients. Sci. Total Environ. 716, 1346610. https://doi.org/10.1016/j.scitotenv.2020.136610 (2020).

    CAS  Article  Google Scholar 

  • 59.

    Baeza, J. A., Childress, M. J. & Ambrosio, L. J. Chemical sensing of microhabitat by pueruli of the reef-dwelling Caribbean spiny lobster Panulirus argus: testing the importance of red algae, juveniles, and their interactive effect. Bull. Mar. Sci. 94(3), 603–618. https://doi.org/10.5343/bms.2017.1132 (2018).

    Article  Google Scholar 

  • 60.

    Butler, M. J. IV. & Herrnkind, W. F. A test of the recruitment limitation and the potential for artificial enhancement of spiny lobster (Panulirus argus) populations in Florida. Can. J. Fish. Aquat. Sci. 54(2), 452–463. https://doi.org/10.1139/f2011-146 (1997).

    CAS  Article  Google Scholar 

  • 61.

    Sharp, W. C. et al. The use of coded microwire tags for mark–recapture studies of juvenile Caribbean spiny lobster, Panulirus argus. J. Crustac. Biol. 20(3), 510–521. https://doi.org/10.1163/20021975-99990067 (2000).

    Article  Google Scholar 

  • 62.

    Heatwole, D. W., Hunt, J. H. & Blonder, B. I. Offshore recruitment of postlarval spiny lobster (Panulirus argus) at Looe Key Reef, Florida. Proc. Gulf Carib. Fish. Inst. 40, 429–433 (1991).

    Google Scholar 

  • 63.

    Herrnkind, W. F. & Butler, M. J. IV. Settlement of spiny lobster, Panulirus argus (Latreille, 1804), in Florida: Pattern without predictability?. Crustaceana 67(1), 46–64. https://doi.org/10.1163/156854094X00288 (1994).

    Article  Google Scholar 

  • 64.

    Cook, G. S., Fletcher, P. J. & Kelble, C. R. Towards marine ecosystem based management in South Florida: Investigating the connections among ecosystem pressures, states, and services in a complex coastal system. Ecol. Indic. 44, 26–39. https://doi.org/10.1016/j.ecolind.2013.10.026 (2014).

    Article  Google Scholar 

  • 65.

    Kuffner, I. B., Lidz, B. H., Hudson, J. H. & Anderson, J. S. A century of ocean warming on Florida keys coral reefs: Historic in situ observations. Estuar. Coasts 38(3), 1085–1096. https://doi.org/10.1007/s12237-014-9875-5 (2014).

    Article  Google Scholar 

  • 66.

    Koch, M. S. et al. Climate change projected effects on coastal foundation communities of the greater Everglades using a 2060 scenario: Need for a new management paradigm. Environ. Manag. 55(4), 857–875. https://doi.org/10.1007/s00267-014-0375-y (2015).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Obeysekera, J., Barnes, J. & Nungesser, M. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change. Environ. Manag. 55(4), 749–762. https://doi.org/10.1007/s00267-014-0315-x (2015).

    ADS  Article  Google Scholar 

  • 68.

    Okazaki, R. R., Swart, P. K. & Langdon, C. Stress tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs 32, 671–683 (2013).

    ADS  Article  Google Scholar 

  • 69.

    Challener, R. A., Robbins, L. L. & McClintock, J. B. Variability of the carbonate chemistry in a shallow, seagrass-dominated exosystem: Implications for ocean acidification experiments. Mar. Freshw. Res. 67, 163–172 (2016).

    CAS  Article  Google Scholar 

  • 70.

    Dickson, A. G., Sabine, C. L. & Christian, J. R. (Eds.) Guide to best practices for ocean CO2measurement. PICES Special Publication 3, 191. (PICES, 2007).

  • 71.

    Lavigne, H., Epitalon, J. M. & Gattuso, J. P. seacarb: seawater carbonate chemistry with R. R package version 3.0. https://CRAN.R-project.org/package=seacarb (2011).

  • 72.

    R Development Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2016).

  • 73.

    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70(1–3), 105–119. https://doi.org/10.1016/S0304-4203(00)00022-0 (2000).

    CAS  Article  Google Scholar 

  • 74.

    Forward, R. B. Jr. & Costlow, J. D. Jr. The ontogeny of phototaxis by larvae of the crab Rhithropanopeus harrisii. Mar. Biol. 26(1), 27–33. https://doi.org/10.1007/BF00389083 (1974).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate