in

The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae

  • 1.

    Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol. 2012;22:1845–50.

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Gause GF. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science. 1934;79:16–7.

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.

    Article  Google Scholar 

  • 4.

    Lankau RA. Rapid evolutionary change and the coexistence of species. Annu Rev Ecol Evol Syst. 2011;42:335–54.

    Article  Google Scholar 

  • 5.

    Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.

    Article  Google Scholar 

  • 6.

    Hubbell SP. Neutral theory and the evolution of ecological equivalence. Ecology. 2006;87:1387–98.

    PubMed  Article  Google Scholar 

  • 7.

    MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. Am Nat. 1967;101:377–85.

    Article  Google Scholar 

  • 8.

    Bailey JK, Hendry AP, Kinnison MT, Post DM, Palkovacs EP, Pelletier F, et al. From genes to ecosystems: an emerging synthesis of eco-evolutionary dynamics. N Phytol. 2009;184:746–9.

    Article  Google Scholar 

  • 9.

    Baquero F, Blázquez J. Evolution of antibiotic resistance. Trends Ecol Evol. 1997;12:482–7.

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Grant PR, Grant BR. Evolution of character displacement in Darwin’s finches. Science. 2006;313:224–6.

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Koeppel AF, Wertheim JO, Barone L, Gentile N, Krizanc D, Cohan FM. Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME J. 2013;7:1080–91.

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Stuart YE, Campbell T, Hohenlohe P, Reynolds RG, Revell L, Losos J. Rapid evolution of a native species following invasion by a congener. Science. 2014;346:463–6.

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci USA. 2010;107:7359–64.

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Pimentel D, Feinberg EH, Wood PW, Hayes JT. Selection, spatial distribution, and the coexistence of competing fly species. Am Nat. 1965;99:97–109.

    Article  Google Scholar 

  • 15.

    Hart SP, Turcotte MM, Levine JM. Effects of rapid evolution on species coexistence. Proc Natl Acad Sci USA. 2019;116:2112–7.

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS. Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections. Proc Natl Acad Sci USA. 2012;110:250–9.

    Article  Google Scholar 

  • 17.

    Turner CB, Marshall CW, Cooper VS. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evolution Lett. 2018;2:355–67.

    Article  Google Scholar 

  • 18.

    Elena SF, Lenski RE. Microbial genetics: evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457.

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69.

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Ferguson GC, Bertels F, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Genetics. 2013;195:1319–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Frenkel EM, McDonald MJ, Van Dyken JD, Kosheleva K, Lang GI, Desai MM. Crowded growth leads to the spontaneous evolution of semistable coexistence in laboratory yeast populations. Proc Natl Acad Sci USA. 2015;112:11306–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DF. Selection for niche differentiation in plant communities increases biodiversity effects. Nature. 2014;515:108.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Le Gac M, Plucain J, Hindré T, Lenski RE, Schneider D. Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA. 2012;109:9487–92.

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Rosenzweig RF, Sharp R, Treves DS, Adams J. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics. 1994;137:903–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Helling RB, Vargas CN, Adams J. Evolution of Escherichia coli during growth in a constant environment. Genetics. 1987;116:349–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    D’Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 2016;12:e1006364.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci USA. 2014;111:17941–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Kallus Y, Miller JH, Libby E. Paradoxes in leaky microbial trade. Nat Commun. 2017;8:1361.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Muller EE, Faust K, Widder S, Herold M, Arbas SM, Wilmes P. Using metabolic networks to resolve ecological properties of microbiomes. Curr Opin Syst Biol. 2018;8:73–80.

    Article  Google Scholar 

  • 30.

    Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol. 2017;1:0109.

    Article  Google Scholar 

  • 31.

    Harcombe WR, Betts A, Shapiro JW, Marx CJ. Adding biotic complexity alters the metabolic benefits of mutualism. Evolution. 2016;70:1871–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ. Evolution of bidirectional costly mutualism from byproduct consumption. Proc Natl Acad Sci USA. 2018;115:12000–4.

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Farrell JM, Brown SP. Evolution of bacterial trade in a two-species community. Proc Natl Acad Sci USA. 2018;115:11874–5.

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Morris JJ. Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genet. 2015;31:475–82.

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Cordero OX, Ventouras L-A, DeLong EF, Polz MF. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci USA. 2012;109:20059–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Adler PB, HilleRisLambers J, Levine JM. A niche for neutrality. Ecol Lett. 2007;10:95–104.

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, et al. Antagonistic coevolution accelerates molecular evolution. Nature. 2010;464:275.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond Ser B: Biol Sci. 2002;269:931–6.

    Article  Google Scholar 

  • 41.

    Piccardi P, Vessman B, Mitri S. Toxicity drives facilitation between 4 bacterial species. Proc Natl Acad Sci USA. 2019;116:15979–84.

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Goddard MR, Greig D. Saccharomyces cerevisiae: a nomadic yeast with no niche? FEMS Yeast Res. 2015;15:fov009.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Van Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 2011;5:173–83.

    PubMed  Article  Google Scholar 

  • 44.

    Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551:45.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Lang GI, Botstein D, Desai MM. Genetic variation and the fate of beneficial mutations in asexual populations. Genetics. 2011;188:647–61.

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol. 2020;4:376–83.

    PubMed  Article  Google Scholar 

  • 47.

    Braun V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev. 1995;16:295–307.

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Branco P, Francisco D, Chambon C, Hebraud M, Arneborg N, Almeida MG, et al. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl Microbiol Biotechnol. 2014;98:843–53.

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol. 2010;64:43–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Howard SP, Herrmann C, Stratilo CW, Braun V. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli. J Bacteriol. 2001;183:5885–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, et al. Functional discovery via a compendium of expression profiles. Cell. 2000;102:109–26.

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015;33:377.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Barrick JE, Colburn G, Deatherage DE, Traverse CC, Strand MD, Borges JJ, et al. Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq. BMC Genom. 2014;15:1039.

    Article  CAS  Google Scholar 

  • 54.

    Hall BG, Acar H, Nandipati A, Barlow M. Growth rates made easy. Mol Biol Evol. 2014;31:232–8.

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 2016;17:172.

    Article  Google Scholar 

  • 56.

    Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE. 2015;10:e0124633.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 58.

    Zhang H, Cheng Q-X, Liu A-M, Zhao G-P, Wang J. A novel and efficient method for bacteria genome editing employing both CRISPR/Cas9 and an antibiotic resistance cassette. Front Microbiol. 2017;8:812.

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc. 2009;4:206.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Biot-Pelletier D, Martin VJ. Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9. J Biol Eng. 2016;10:6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Quan J, Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE. 2009;4:e6441.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 63.

    Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:31–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate