Chippaux, J. P. Snake-bites: appraisal of the global situation. Bull. World Health Organ. 76, 515.9868843 (1998).
White, J. Bites and stings from venomous animals: a global overview. Ther. Drug Monit. 22, 65–68 (2000).
Juckett, G. & Hancox, J. G. Venomous snakebites in the United States: management review and update. Am. Fam. Phys. 65, 1367–1378 (2002).
Kasturiratne, A. et al. Estimates of disease burden due to land-snake bite in Sri Lankan hospitals. Southeast. Asian. J. Trop. Med. Public Health 36, 733 (2005).
Gutiérrez, J. M., Theakston, R. D. G. & Warrell, D. A. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 3, e150 (2006).
Kasturiratne, A. et al. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).
Cruz, L. S., Vargas, R. & Lopes, A. A. Snakebite envenomation and death in the developing world. Ethn. Dis. 19, 42 (2009).
Warrell, D. Snake bite. Lancet 375, 77–88 (2010).
Chippaux, J. P. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon 57, 586–599 (2011).
Gutiérrez, J. M. Snakebite envenoming: a public health perspective. In Public Health-Methodology, Environmental and Systems Issues (ed. Maddock, J.) (InTech, London, 2012).
Hansson, E., Sasa, M., Mattisson, K., Robles, A. & Gutiérrez, J. M. Using geographical information systems to identify populations in need of improved accessibility to antivenom treatment for snakebite envenoming in Costa Rica. PLoS Negl. Trop. Dis. 7, e2009 (2013).
Nori, J., Carrasco, P. A. & Leynaud, G. C. Venomous snakes and climate change: ophidism as a dynamic problem. Clim. Change 122, 67–80 (2014).
Chippaux, J. P. Incidence and mortality due to snakebite in the Americas. PLoS Negl. Trop. Dis. 11, e0005662-e5739 (2017).
Longbottom, J. et al. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet 392, 673–684 (2018).
Gutiérrez, J. M. et al. Snakebite envenoming. Nature 3, 17063 (2017).
Alirol, E., Sharma, S. K., Bawaskar, H. S., Kuch, U. & Chappuis, F. Snake bite in South Asia: a review. PLoS Negl. Trop. Dis. 4, e603 (2010).
Yañez-Arenas, C., Díaz-Gamboa, L., Patrón-Rivero, C., López-Reyes, K. & Chiappa-Carrara, X. Estimating geographic patterns of ophidism risk in Ecuador. Neotrop. Biodivers. 4, 55–61 (2018).
Dehghani, R., Fathi, B., Panjeh Shahi, M. & Jazayeri, M. Ten years of snakebites in Iran. Toxicon 90, 291–298 (2014).
Latifi, M. The Snakes of Iran (Department of Environment, Tehran, 2000).
Monzavi, S. M., Dadpour, B. & Afshari, R. Snakebite management in Iran: devising a protocol. J. Res. Med. Sci. 19, 153–163 (2014).
Rastegar-Pouyani, E. et al. A re-evaluation of taxonomic status of Montivipera (Squamata: Viperidae) from Iran using a DNA barcoding approach. Biochem. Syst. Ecol. 57, 350–356 (2014).
Oraie, H. et al. Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra 54, 233–238 (2018).
Moradi, N., Rastegra-Pouyani, N. & Rastegra-Pouyani, E. Geographic variation in the morphology of Macrovipera lebetina (Linnaeus, 1758) (Ophidia: Viperidae) in Iran. Acta Herpetol. 9, 187–202 (2014).
Fathinia, B., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Toodeh-Dehghan, F. & Rajabizadeh, M. Molecular systematics of the genus Pseudocerastes (Ophidia: Viperidae) based on the mitochondrial cytochrome b gene. Turk. J. Zool. 38, 575–581 (2014).
Behrooz, R. et al. Habitat modeling and conservation of the endemic Latifi’s viper (Montivipera latifii) in Lar National Park Northern Iran. Herpetol. Conserv. Biol. 10, 572–582 (2015).
Khani, Sh., Kami, H. G. & Rajabizadeh, M. Geographic variation of Gloydius halys caucasicus (Serpentes: Viperidae) in Iran. Zool. Middle East. 63, 303–310 (2017).
Fathinia, B., Rastegar-Pouyani, N. & Rastegar-Pouyani, E. Molecular phylogeny and historical biogeography of genera Eristicophis and Pseudocerastes (Ophidia, Viperidae). Zool. Scr. 47, 673–685 (2018).
Rastegar-Pouyani, E., Oraie, H., Khosravani, A. & Akbari, A. Phylogenetic position of Iranian pitvipers (Viperidae, Crotalinae, Gloydius) inferred from mitochondrial cytochrome b sequences. Trop. Zool. 31, 55–67 (2018).
Eslamian, L. et al. Snake bite in Northwest Iran: a retrospective study. J. Anal. Res. Clin. Med. 4, 133–138 (2016).
Dehghani, R., Rabani, D., Panjeh-Shahi, M., Jazayeri, M. & Sabahi Bidgoli, M. Incidence of snake bite in Kashan, IR Iran during an eight-year period (2004–2011). Arch. Trauma Res. 1, 67–71 (2012).
Farzaneh, E. et al. Epidemiological study of snakebites in Ardabil Province (Iran). Electron. Phys. 9, 3986–3990 (2017).
Ebrahimi, V., Hamdami, E., Khademian, M. H., Moemenbellah-Fard, M. D. & Vazirianzadeh, B. Epidemiologic prediction of snake bites in tropical south Iran: using seasonal time series methods. Clin. Epidemiol. Glob. Health 6, 208–215 (2018).
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
Milanesi, P., Holderegger, R., Caniglia, R., Fabbri, E. & Randi, E. Different habitat suitability models yield different least-cost path distances for landscape genetic analysis. Basic Appl. Ecol. 17, 61–71 (2015).
Moradi, S., Sheykhi Ilanloo, S., Kafash, A. & Yousefi, Y. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecol. Indic. 97, 159–164 (2019).
Farrell, A. et al. Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data. Ecol. Evol. 9, 5938–5949 (2019).
Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLoS ONE 8, e79295 (2013).
Bradie, J. & Leung, B. A. quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
Ashoori, A. et al. Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 85, 373–381 (2018).
Sutton, L. J. & Puschendorf, R. Climatic niche of the Saker Falcon Falco cherrug: predicted new areas to direct population surveys in Central Asia. Ibis 162, 27–41 (2020).
Andrade-Díaz, M. S. et al. Expansion of the agricultural frontier in the largest South American Dry Forest: identifying priority conservation areas for snakes before everything is lost. PLoS ONE 14, e0221901 (2019).
Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
Qin, A. et al. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).
Wang, R. et al. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 13, e0192153 (2018).
Kafash, A. et al. Climate change produces winners and losers: differential responses of amphibians in mountain forests of the Near East. Glob. Ecol. Conserv. 16, e00471 (2018).
Schivo, F., Bauni, V., Krug, P. & Quintana, R. D. Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. Appl Geogr. 103, 70–89 (2019).
Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., Kusza, S. & Pilliod, D. S. Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Glob. Ecol. Conserv. 19, e00637 (2019).
Yousefi, M., Jouladeh-Rodbar, A. & Kafash, A. Using endemic freshwater fishes as proxies of their ecosystems to identify high priority rivers for conservation under climate change. Ecol. Indic. 112, 106137 (2020).
Segura, S., Coppens d’Eeckenbrugge, G., López, L., Grum, M. & Guarino, L. Mapping the potential distribution of five species of Passiflora in Andean countries. Genet. Resour. Crop Evol. 50, 555–566 (2003).
Rebelo, H. & Jones, G. Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47, 410–420 (2010).
Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632 (2017).
Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).
Pauli, B. P. et al. Human habitat selection: using tools from wildlife ecology to predict recreation in natural landscapes. Nat. Areas J. 39, 142–149 (2019).
Yañez-Arenas, C., Peterson, A. T., Mokondoko, P., Rojas-Soto, O. & Martínez-Meyer, E. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican State of Veracruz. PLoS ONE 9, e100957 (2014).
Yañez-Arenas, C., Peterson, A. T., Rodriguez-Medina, K. & Barve, N. Mapping current and future potential snakebite risk in the new world. Clim. Change 134, 697–711 (2016).
Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195 (2019).
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: a systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403 (2019).
Hannah, L. Climate Change Biology 2nd edn. (Academic Press, Cambridge, 2015).
Yousefi, M. & Kafash, A. Venomous snakes of Iran under climate change. In SCCS Europe—4th Hungarian Student Conference on Conservation Science, 4–8 September (2018).
Maritz, B. et al. Identifying global priorities for the conservation of vipers. Biol. Conserv. 204, 94–102 (2016).
Sharma, S. K. et al. Effectiveness of rapid transport of victims and community health education on snake bite fatalities in rural Nepal. Am. J. Trop. Med. Hyg. 89, 145–150 (2013).
WHO. Guidelines for the Management of Snakebites (World Health Organization, Geneva, 2016).
Trogridou, A. Prevention is Better Than Cure: Snakebite Education in India (Episthmes Agogis, 2018).
Chappuis, F., Sharma, S. K., Jha, N., Loutan, L. & Bovier, P. A. Protection against snake bites by sleeping under a bed net in southeastern Nepal. Am. J. Trop. Med. Hyg. 77, 197–199 (2007).
Khatchikian, C., Sangermano, F., Kendell, D. & Livdahl, T. Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction. Med. Vet. Entomol. 25, 268–275 (2011).
Escobar, L. E. et al. Ecology and geography of transmission of two bat-borne rabies lineages in Chile. PLoS Negl. Trop. Dis. 7, e2577 (2013).
Du, Z. et al. Ecological niche modeling for predicting the potential risk areas of severe fever with thrombocytopenia syndrome. Int. J. Infect. Dis. 26, 1–8 (2014).
Peterson, T. Mapping Disease Transmission Risk: Enriching Models Using Biogeography and Ecology (Johns Hopkins University Press, Baltimore, 2014).
Escobar, L. E. & Craft, M. E. Advances and limitations of disease biogeography using ecological niche modeling. Front. Microbiol. 7, 1174 (2016).
Escobar, L. E. et al. Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Vet. Res. 46, 92 (2015).
Nyakarahuka, L. et al. Ecological niche modeling for filoviruses: a risk map for Ebola and Marburg virus disease outbreaks in Uganda.PLoS Curr. (2017). Edition 1 2017.https://doi.org/10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1.
Soucy, J. P. R. et al. High-resolution ecological niche modeling of Ixodes scapularis ticks based on passive surveillance data at the Northern Frontier of Lyme disease emergence in North America. Vector Borne Zoonotic Dis. 18, 235–242 (2018).
Little, E. A. H. et al. Predicting spatiotemporal patterns of Lyme disease incidence from passively collected surveillance data for Borrelia burgdorferi sensu lato-infected Ixodes scapularis ticks. Ticks. Ticks Tick Borne Dis. 10, 970–980 (2019).
Johnson, E. E., Escobar, L. E. & Zambrana-Torrelio, C. An ecological framework for modeling the geography of disease transmission. Trends Ecol. Evol. 34, 655–668 (2019).
Yousefi, M. et al. Upward altitudinal shifts in habitat suitability of mountain vipers since the last glacial maximum. PLoS ONE 10, e0138087 (2015).
Rajabizadeh, M. Snakes of Iran (IranShenasi Publishing, Tehran, 2017).
IUCN. The IUCN Red List of Threatened Species. Version 2019.3. https://www.iucnredlist.org. Accessed 10 March 2020 (2019).
Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
Terribile, L. C. et al. Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia 159, 617 (2009).
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Broxton, P. D., Zeng, X., Schefic, W. & Troch, P. A. A MODIS-Based global 1-km maximum green vegetation fraction dataset. J. Appl. Meteorol. Clim. 53, 1996–2004 (2014).
Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R Package (2015).
Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. https://srtm.csi.cgiar.org. Accessed on 15 Apr 2015 (2008).
Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
Naimi, B. Uncertainty Analysis for Species Distribution Models. R Package Version 1.1-15 (2015).
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, 2017).
Ridgeway, G. The state of boosting. Comput. Stat. 31, 172–181 (1999).
Hastie, T. J. & Tibshirani, R. Generalized Additive Models (Chapman and Hall, London, 1990).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.3-7 (2016).
Freeman, E. A. & Moisen, G. PresenceAbsence: an r package for presence absence model analysis. J. Stat. Softw. 23, 1–31 (2008).
Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence–absence models. Environ. Conserv. 24, 38–49 (1997).
Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
Source: Ecology - nature.com