in

Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy

  • 1.

    Hansell DA. Recalcitrant dissolved organic carbon fractions. Ann Rev Mar Sci. 2013;5:421–45.

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Azam F. Microbial control of oceanic carbon flux: the plot thickens. Science. 1998;280:694–6.

    CAS  Article  Google Scholar 

  • 3.

    Simon M, Rosenstock B. Different coupling of dissolved amino acid, protein, and carbohydrate turnover to heterotrophic picoplankton production in the Southern Ocean in austral summer and fall. Limnol Oceanogr. 2007;52:85–95.

    CAS  Article  Google Scholar 

  • 4.

    Suttle CA, Chan AM, Fuhrman JA. Dissolved free amino acids in the Sargasso Sea: uptake and respiration rates, turnover times, and concentrations. Mar Ecol Prog Ser. 1991;70:189–99.

    CAS  Article  Google Scholar 

  • 5.

    Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep Sea Res II Top Stud Oceanogr. 2002;49:3017–38.

    CAS  Article  Google Scholar 

  • 6.

    Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta. 2006;70:2990–3010.

    CAS  Article  Google Scholar 

  • 7.

    Koch H, Duerwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann J-H, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Ferguson RL, Sunda WG. Utilization of amino acids by planktonic marine bacteria: importance of clean technique and low substrate additions 1, 2. Limnol Oceanogr. 1984;29:258–74.

    CAS  Article  Google Scholar 

  • 9.

    Fuhrman JA, Ferguson RL. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. Mar Ecol Prog Ser. 1986;33:237–42.

    CAS  Article  Google Scholar 

  • 10.

    Hodson R, Azam F, Carlucci A, Fuhrman J, Karl D, Holm-Hansen O. Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar Biol. 1981;61:89–94.

    Article  Google Scholar 

  • 11.

    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Thornton DC. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol. 2014;49:20–46.

    CAS  Article  Google Scholar 

  • 13.

    Fogg GE. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot Mar. 1983;26:3–14.

    CAS  Article  Google Scholar 

  • 14.

    Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini‐review: phytoplankton‐derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 15.

    Obernosterer I, Herndl GJ. Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N:P ratio. Mar Ecol Progr Ser. 1995;116:247–57.

    Article  Google Scholar 

  • 16.

    Flynn KJ, Clark DR, Xue Y. Modeling the release of dissolved organic matter by phytoplankton 1. J Phycol. 2008;44:1171–87.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Seymour JR, Simó R, Ahmed T, Stocker R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science. 2010;329:342–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Strom S, Wolfe G, Slajer A, Lambert S, Clough J. Chemical defense in the microplankton II: Inhibition of protist feeding by β‐dimethylsulfoniopropionate (DMSP). Limnol Oceanogr. 2003;48:230–7.

    CAS  Article  Google Scholar 

  • 19.

    Wolfe GV, Steinke M, Kirst GO. Grazing-activated chemical defence in a unicellular marine alga. Nature. 1997;387:894.

    CAS  Article  Google Scholar 

  • 20.

    Bidle KD. The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann Rev Mar Sci. 2015;7:341–75.

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Caron DA, Hutchins DA. The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J Plank Res. 2013;35:235–52.

    Article  Google Scholar 

  • 22.

    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Sapp M, Schwaderer AS, Wiltshire KH, Hoppe H-G, Gerdts G, Wichels A. Species-specific bacterial communities in the phycosphere of microalgae? Micro Ecol. 2007;53:683–99.

    Article  Google Scholar 

  • 25.

    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 2020;14:1369–83.

  • 29.

    Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Nat Acad Sci. 2014;111:7202–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Tang K, Jiao N, Liu K, Zhang Y, Li S. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PloS ONE. 2012;7:e41204.

  • 32.

    Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles. 1995;9:359–72.

    CAS  Article  Google Scholar 

  • 33.

    Alavi M, Miller T, Erlandson K, Schneider R, Belas R. Bacterial community associated with Pfiesteria‐like dinoflagellate cultures. Environ Microbiol. 2001;3:380–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Amin S, Hmelo L, Van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 2018;9:659.

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJ. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol. 2004;47:345–57.

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Hold GL, Smith EA, Rappë MS, Maas EW, Moore ER, Stroempl C, et al. Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiol Ecol. 2001;37:161–73.

    CAS  Article  Google Scholar 

  • 38.

    Guillard R, Hargraves P. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993;32:234–6.

    Article  Google Scholar 

  • 39.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Widner B, Kido Soule MCK, Ferrer-González FX, Moran MA, Kujawinski EB. Superior and novel detection of small, polar metabolites in saline samples using pre-extraction benzoyl chloride derivatization and Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC MS/MS). chemRXiv. 2020. https://doi.org/10.26434/chemrxiv.12915488.v1.

  • 42.

    Oehlke J, Brudel M, Blasig IE. Benzoylation of sugars, polyols and amino acids in biological fluids for high-performance liquid chromatographic analysis. J Chromatogr B Biomed Sci Appl. 1994;655:105–11.

    CAS  Article  Google Scholar 

  • 43.

    Wong J-MT, Malec PA, Mabrouk OS, Ro J, Dus M, Kennedy RT. Benzoyl chloride derivatization with liquid chromatography–mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A. 2016;1446:78–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Kido Soule MC, Longnecker K, Johnson WM, Kujawinski EB. Environmental metabolomics: analytical strategies. Mar Chem. 2015;177:374–87.

    CAS  Article  Google Scholar 

  • 45.

    Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2017;39:229–44.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 46.

    Henderson CM, Shulman NJ, MacLean B, MacCoss MJ, Hoofnagle AN. Skyline performs as well as vendor software in the quantitative analysis of serum 25-hydroxy vitamin D and vitamin D binding globulin. Clin Chem. 2018;64:408–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, et al. Bacterial taxa that limit sulfur flux from the ocean. Science. 2006;314:649–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Todd JD, Curson AR, Sullivan MJ, Kirkwood M, Johnston AW. The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PloS ONE. 2012;7:e35947.

  • 49.

    Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide utilization loci: fueling microbial communities. J Bacteriol. 2017;199:e00860–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Boulanger A, Déjean G, Lautier M, Glories M, Zischek C, Arlat M, et al. Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. J Bacteriol. 2010;192:1487–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J Bacteriol. 2008;190:5230–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Brinkkötter A, Shakeri-Garakani A, Lengeler JW. Two class II D-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol. 2002;177:410–9.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 53.

    Leyn SA, Gao F, Yang C, Rodionov DA. N-Acetylgalactosamine utilization pathway and regulon in Proteobacteria, genomic reconstruction and experimental characterization in Shewanella. J Biol Chem. 2012;287:28047–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Rodionov DA, Yang C, Li X, Rodionova IA, Wang Y, Obraztsova AY, et al. Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. BMC Genomics. 2010;11:494.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013;42:D490–5.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Beattie A, Hirst E, Percival E. Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae. Biochem J. 1961;79:531.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Størseth TR, Hansen K, Reitan KI, Skjermo J. Structural characterization of β-D-(1→ 3)-glucans from different growth phases of the marine diatoms Chaetoceros mülleri and Thalassiosira weissflogii. Carbohydr Res. 2005;340:1159–64.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 58.

    Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Nat Acad Sci. 2020;117:6599–607.

  • 59.

    Unfried F, Becker S, Robb CS, Hehemann J-H, Markert S, Heiden SE, et al. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J. 2018;12:2894.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9:e1001221.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M. Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Mar Drugs. 2015;13:5993–6018.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Barbeyron T, Thomas F, Barbe V, Teeling H, Schenowitz C, Dossat C, et al. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae‐associated bacterium Zobellia galactanivorans DsijT. Environ Microbiol. 2016;18:4610–27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Kabisch A, Otto A, König S, Becher D, Albrecht D, Schüler M, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J. 2014;8:1492.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol. 2013;79:6813–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7:11965.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Azam F, Fenchel T, Field J, Grey J, Meyer-Reil L, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.

    Article  Google Scholar 

  • 68.

    Cole JJ, Findlay S, Pace ML. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Progr Ser. 1988;43:1–10.

    Article  Google Scholar 

  • 69.

    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Nat Acad Sci. 2016;113:3143–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Kujawinski EB. The impact of microbial metabolism on marine dissolved organic matter. Ann Rev Mar Sci. 2011;3:567–99.

    PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, et al. A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnol Biofuels. 2016;9:260.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Mathieu S, Touvrey-Loiodice M, Poulet L, Drouillard S, Vincentelli R, Henrissat B, et al. Ancient acquisition of “alginate utilization loci” by human gut microbiota. Sci Rep. 2018;8:8075.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 73.

    Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Azizan A, Ahamad Bustamam MS, Maulidiani M, Shaari K, Ismail IS, Nagao N, et al. Metabolite profiling of the microalgal diatom Chaetoceros calcitrans and correlation with antioxidant and nitric oxide inhibitory activities via 1H NMR-based metabolomics. Mar Drugs. 2018;16:154.

    PubMed Central  Article  CAS  Google Scholar 

  • 75.

    Hellebust JA. Excretion of some organic compounds by marine phytoplankton 1. Limnol Oceanogr. 1965;10:192–206.

    Article  Google Scholar 

  • 76.

    Boroujerdi AF, Lee PA, DiTullio GR, Janech MG, Vied SB, Bearden DW. Identification of isethionic acid and other small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. Anal Bioanal Chem. 2012;404:777–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Iglesias MJ, Soengas R, Probert I, Guilloud E, Gourvil P, Mehiri M, et al. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea). Phytochemistry. 2019;164:192–205.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Jeong K-S, Jeong K-Y, Hong Y-S, Kim D-K, Oh H-J, Chang K-H. Application of nuclear magnetic resonance for analyzing metabolic characteristics of winter diatom blooms. J Plank Res. 2020;42:31–9.

    Article  Google Scholar 

  • 79.

    Scholz B, Liebezeit G. Compatible solutes in three marine intertidal microphytobenthic Wadden Sea diatoms exposed to different salinities. Eur J Phycol. 2012;47:393–407.

    CAS  Article  Google Scholar 

  • 80.

    Bell W, Mitchell R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.

    Article  Google Scholar 

  • 81.

    Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol. 2004;70:4692–701.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003;424:1042–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature. 2015;528:99–104.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 84.

    Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J. 2014;8:249–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Kirchman DL. Phytoplankton death in the sea. Nature. 1999;398:293–4.

    CAS  Article  Google Scholar 

  • 86.

    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system. Environ Microbiol. 2017;19:3500–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Enke TN, Datta MS, Schwartzman J, Cermak N, Schmitz D, Barrere J, et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr Biol. 2019;29:1528–35.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Ferraris RP, Diamond JM. Specific regulation of intestinal nutrient transporters by their dietary substrates. Ann Rev Physiol. 1989;51:125–41.

    CAS  Article  Google Scholar 

  • 89.

    McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Nat Acad Sci. 2010;107:16420–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12:616–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 2019;20:92.

    PubMed  PubMed Central  Article  Google Scholar 

  • 92.

    Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2011;2:589.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 93.

    Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Nat Acad Sci. 2020;117:3656–62.

  • 94.

    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Nat Acad Sci. 2015;112:6449–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 95.

    Benson A, Lee R. The sulphoglycolytic pathway in plants. Biochem J. 1972;128:29P.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Busby WF. Sulfoporpanedial and cysteinolic acid in the diatom. Biochim Biophys Acta. 1966;121:160–1.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 97.

    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Nat Acad Sci. 2015;112:453–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 98.

    Landa M, Burns AS, Durham BP, Esson K, Nowinski B, Sharma S, et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 2019;13:2536–50.

  • 99.

    Denger K, Lehmann S, Cook AM. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16. Microbiology. 2011;157:2983–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 100.

    Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2, 3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology. 2010;156:1556–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Solve Challenge Finals go virtual for 2020

    Universities should lead the way on climate action, MIT panelists say