in

Reptile species richness associated to ecological and historical variables in Iran

  • 1.

    Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152 (2008).

    Article  Google Scholar 

  • 2.

    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).

    ADS  CAS  Article  Google Scholar 

  • 5.

    McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).

    Google Scholar 

  • 6.

    Hortal, J. et al. Species richness can decrease with altitude but not with habitat diversity. PNAS 110, E2149–E2150 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Noroozi, J. et al. Hotspots within a global biodiversity hotspot – areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Jansson, R. Global patterns in endemism explained by past climatic change. Proc. R. Soc. B 270, 583–590 (2003).

    PubMed  Article  Google Scholar 

  • 9.

    Sandel, B. et al. The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Craw, D. et al. Rapid biological speciation driven by tectonic evolution in New Zealand. Nat. Geosci. 9, 140 (2016).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Pellissier, L., Heine, C., Rosauer, D. F. & Albouy, C. Are global hotspots of endemic richness shaped by plate tectonics?. Biol. J. Linn. Soc. 123, 247–261 (2017).

    Article  Google Scholar 

  • 12.

    Graham, C. H., Smith, T. B. & Languy, M. Current and historical factors influencing patterns of species richness and turnover of birds in the Gulf of Guinea highlands. J. Biogeogr. 32, 1371–1384 (2005).

    Article  Google Scholar 

  • 13.

    Araújo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15 (2008).

    Article  Google Scholar 

  • 14.

    Uetz, P. Freed, P. & Hošek J. The Reptile Database. https://www.reptile-database.org (accessed Aug 6, 2019] (2019).

  • 15.

    Rodriguez, M. A., Belmontes, J. A. & Hawkins, B. A. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecol. 28, 65–70 (2005).

    ADS  Article  Google Scholar 

  • 16.

    Guedes, T. B. et al. Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. Glob. Ecol. Biogeogr. 27, 14–21 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Pough, H. et al. Herpetology (Prentice Hall, Upper Saddle River, 2001).

    Google Scholar 

  • 18.

    Doan, T. M. A south-to-north biogeographic hypothesis for Andean speciation: evidence from the lizard genus Proctoporus (Reptilia, Gymnophthalmidae). J. Biogeogr. 30, 361–374 (2003).

    Article  Google Scholar 

  • 19.

    Agarwal, I., Bauer, A. M., Jackman, T. R. & Karanth, K. P. Insights into Himalayan biogeography from geckos: a molecular phylogeny of Cyrtodactylus (Squamata: Gekkonidae). Mol. Phylogenet. Evol. 80, 145–155 (2014).

    PubMed  Article  Google Scholar 

  • 20.

    Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).

    Article  Google Scholar 

  • 21.

    IUCN. The IUCN Red List of Threatened Species. Version 2019.3. https://www.iucnredlist.org. (2019).

  • 22.

    Powney, G. D., Grenyer, R., Orme, C. D., Owens, I. P. & Meiri, S. Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Glob. Ecol. Biogeogr. 19, 386–396 (2010).

    Article  Google Scholar 

  • 23.

    Qian, H. Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol. Res. 25, 629–637 (2010).

    Article  Google Scholar 

  • 24.

    Coops, N. C., Rickbeil, G. J. M., Bolton, D. K., Andrew, M. E. & Brouwers, N. C. (2018), Disentangling vegetation and climate as drivers of Australian vertebrate richness. Ecography 41, 1147–1160 (2018).

    Article  Google Scholar 

  • 25.

    Skeels, A., Esquerré, D. & Cardillo, M. Alternative pathways to diversity across ecologically distinct lizard radiations. Glob. Ecol. Biogeogr. 29, 454–469 (2020).

    Article  Google Scholar 

  • 26.

    Soares, C. & Brito, J. C. Environmental correlates for species richness among amphibians and reptiles in a climate transition area. Biodivers. Conserv. 16, 1087 (2007).

    Article  Google Scholar 

  • 27.

    Tallowin, O., Allison, A., Algar, A. C., Kraus, F. & Meiri, S. Papua New Guinea terrestrial-vertebrate richness: elevation matters most for all except reptiles. J. Biogeogr. 44, 1734–1744 (2017).

    Article  Google Scholar 

  • 28.

    Kissling, D. W., Blach-Overgaard, A., Zwaan, R. E. & Wagner, P. Historical colonization and dispersal limitation supplement climate and topography in shaping species richness of African lizards (Reptilia: Agaminae). Sci. Rep. 6, 34014 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Ficetola, G. F., Bonardi, A., Sindaco, R. & Padoa-Schioppa, E. Estimating patterns of reptile biodiversity in remote regions. J. Biogeogr. 40, 1202–1211 (2013).

    Article  Google Scholar 

  • 30.

    Hosseinzadeh, M., Aliabadian, M., Rastegar-Pouyani, E. & Rastegar-Pouyani, N. The roles of environmental factors on reptile richness in Iran. Amphib. Reptil. 35, 215–225 (2014).

    Article  Google Scholar 

  • 31.

    Ficetola, G. F., Falaschi, M., Bonardi, A., Padoa-Schioppa, E. & Sindaco, R. Biogeographical structure and endemism pattern in reptiles of the Western Palearctic. Prog. Phys. Geogr. 42, 220–236 (2018).

    Article  Google Scholar 

  • 32.

    Rastegar-Pouyani, E., Rastegar-Pouyani, N., Kazemi-Noureini, S., Joger, U. & Wink, M. Molecular phylogeny of the Eremias persica complex of the Iranian plateau (Reptilia: Lacertidae), based on mtDNA sequences. Zool. J. Linn. Soc. 158, 641–660 (2010).

    Article  Google Scholar 

  • 33.

    Rastegar-Pouyani, E., Kazemi-Noureini, S., Rastegar-Pouyani, N., Joger, U. & Wink, M. Molecular phylogeny and intraspecific differentiation of the Eremias velox complex of the Iranian Plateau and Central Asia (Sauria, Lacertidae). J. Zool. Syst. Evol. 50, 220–229 (2012).

    Article  Google Scholar 

  • 34.

    Ahmadzadeh, F. et al. Inferring the effects of past climate fluctuations on the distribution pattern of Iranolacerta (Reptilia, Lacertidae): Evidence from mitochondrial DNA and species distribution models. Zool. Anz. 252, 141–148 (2013).

    Article  Google Scholar 

  • 35.

    Ahmadzadeh, F., Carretero, M. A., Harris, D. J., Perera, A. & Böhme, W. A molecular phylogeny of the eastern group of ocellated lizard genus Timon (Sauria: Lacertidae) based on mitochondrial and nuclear DNA sequences. Amphib. Reptil. 33, 1–10 (2012).

    Article  Google Scholar 

  • 36.

    Macey, J. R. Testing hypotheses for vicariant separation in the agamid lizard Laudakia caucasia from mountain ranges of the Northern Iranian plateau. Mol. Phylogenet. Evol. 14, 479–483 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Rajabizadeh, M. et al. Alpine-Himalayan orogeny drove correlated morphological, molecular, and ecological diversification in the Persian dwarf snake (Squamata: Serpentes: Eirenis persicus). Zool. J. Linn. Soc. 176, 878–913 (2016).

    Article  Google Scholar 

  • 38.

    Anderson, S. C. The Lizards of Iran (Society for the Study of Amphibians and Reptiles, Oxford, 1999).

    Google Scholar 

  • 39.

    Eskandarzadeh, N. et al. Annotated checklist of the endemic Tetrapoda species of Iran. Zoosystema 40, 507–537 (2018).

    Article  Google Scholar 

  • 40.

    Saberi-Pirooz, R. et al. Dispersal beyond geographic barriers: a contribution to the phylogeny and demographic history of Pristurus rupestris Blanford, 1874 (Squamata: Sphaerodactylidae) from southern Iran. Zoology 134, 8–15 (2019).

    PubMed  Article  Google Scholar 

  • 41.

    Ahmadi, H. & Feiznia, S. Quaternary Formations (Aeoretical and Applied Principles in Natural Resources) (University of Tehran Press, Tehran, 2006).

    Google Scholar 

  • 42.

    Stümpel, N., Rajabizadeh, M., Avcı, A., Wüster, W. & Joger, U. Phylogeny and diversification of mountain vipers (Montivipera, Nilson etal. 2013) triggered by multiple Plio-Pleistocene refugia and high-mountain topography in the Near and Middle East. Mol. Phylogenet. Evol. 101, 336–351 (2016).

    PubMed  Article  Google Scholar 

  • 43.

    Yousefi, M. et al. Upward altitudinal shifts in habitat suitability of mountain vipers since the Last Glacial Maximum. PLoS ONE 10, e0138087 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Rastegar-Pouyani, N., Rastegar-Pouyani, E. & Jawaheri, M. Field Guide to the Reptiles of Iran (Razi University Press, Kermanshah, 2007).

    Google Scholar 

  • 45.

    Kafash, A., Kaboli, M., Köhler, G., Yousefi, M. & Asadi, A. Ensemble distribution modeling of the Mesopotamian spiny-tailed lizard, Saara loricate (Blanford, 1874), in Iran: an insight into the impact of climate change. Turk. J. Zool. 40, 262–271 (2016).

    Article  Google Scholar 

  • 46.

    Faizi, H. et al. A new species of Eumeces Wiegmann 1834 (Sauria: Scincidae) from Iran. Zootaxa 4320, 289–304 (2017).

    Article  Google Scholar 

  • 47.

    Torki, F. Description of a new species of Lytorhynchus (Squamata: Colubridae) from Iran. Zool. Middle East. 63, 109–116 (2017).

    Article  Google Scholar 

  • 48.

    Fattahi, R. et al. Modelling the potential distribution of the Bridled Skink, Trachylepis vittata (Olivier, 1804), in the Middle East. Zool. Middle East 60, 208–216 (2014).

    Article  Google Scholar 

  • 49.

    Kafash, A. et al. Phrynocephalus scutellatus (Olivier, 1807) in Iranian Plateau: The degree of niche overlap depends on the phylogenetic distance. Zool. Middle East. 64, 47–54 (2018).

    Article  Google Scholar 

  • 50.

    Rodríguez, M. Á., Belmontes, J. A. & Hawkins, B. A. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecol. 28, 65–70 (2005).

    ADS  Article  Google Scholar 

  • 51.

    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).

    Article  Google Scholar 

  • 52.

    Currie, D. J. Energy and large-scale patterns of animal and plant-species richness. Am Nat. 137, 27–49 (1991).

    Article  Google Scholar 

  • 53.

    Whittaker, R. J., Nogues-Bravo, D. & Araujo, M. B. Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob. Ecol. Biogeogr. 16, 76–89 (2007).

    Article  Google Scholar 

  • 54.

    Iverson, J. B. Species richness maps of the freshwater and terrestrial turtles of the world. Smithsonian Herpet. Inform. Serv. 88, 1–18 (1992).

    Google Scholar 

  • 55.

    Schall, J. J. & Pianka, E. R. Geographical trends in number of species. Science 201, 679–686 (1978).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 56.

    Vidan, E. et al. The Eurasian hot nightlife: environmental forces associated with nocturnality in lizards. Glob. Ecol. Biogeogr. 26, 1316–1325 (2017).

    Article  Google Scholar 

  • 57.

    Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B 359, 183–195 (2004).

    CAS  Article  Google Scholar 

  • 58.

    Rajabizadeh, M. et al. Geographic variation, distribution and habitat of Natrix tessellata in Iran. Mertensiella 18, 414–429 (2011).

    Google Scholar 

  • 59.

    Veith, M., Schmidtler, J. F., Kosuch, J., Baran, I. & Seitz, A. Palaeoclimatic changes explain Anatolian mountain frog evolution: a test for alternating vicariance and dispersal events. Mol. Ecol. 12, 185–199 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Farasat, H., Akmali, V. & Sharifi, M. Population Genetic Structure of the Endangered Kaiser’s Mountain Newt, Neurergus kaiseri (Amphibia: Salamandridae). PLoS ONE 11, e0149596 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Perktaş, U., Barrowclough, G. F. & Groth, J. G. Phylogeography and species limits in the green woodpecker complex (Aves: Picidae): multiple Pleistocene refugia and range expansion across Europe and the Near East. Biol. J. Linn. Soc. 104, 710–723 (2011).

    Article  Google Scholar 

  • 62.

    Perktas, U. & Quintero, E. A wide geographical survey of mitochondrial DNA variation in the great spotted woodpecker complex, Dendrocopos major (Aves: Picidae). Biol. J. Linn. Soc. 108, 173–188 (2013).

    Article  Google Scholar 

  • 63.

    Haddadian-Shad, H., Darvish, J., Rastegar-Pouyani, E. & Mahmoudi, A. Subspecies differentiation of the house mouse Mus musculus Linnaeus, 1758 in the center and east of the Iranian plateau and Afghanistan. Mammalia 81, 1–22 (2016).

    Google Scholar 

  • 64.

    Dianat, M., Darvish, J., Cornette, R., Aliabadian, M. & Nicolas, V. Evolutionary history of the Persian Jird, Meriones persicus, based on genetics, species distribution modelling and morphometric data. J. Zool. Syst. Evol. 55, 29–45 (2016).

    Article  Google Scholar 

  • 65.

    Ashrafzadeha, M. R., Rezaei, H. R., Khalilipourc, O. & Kuszad, S. Genetic relationships of wild boars highlight the importance of Southern Iran in forming a comprehensive picture of the species’ phylogeography. Mamm. Biol. 92, 21–29 (2018).

    Article  Google Scholar 

  • 66.

    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    Article  Google Scholar 

  • 67.

    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    PubMed  Article  Google Scholar 

  • 68.

    Ahmadzadeh, F. et al. The evolutionary history of two lizards (Squamata: Lacertidae) is linked to the geological development of Iran. Zool. Anz. 270, 49–56 (2017).

    Article  Google Scholar 

  • 69.

    Nilson, G., Rastegar-Pouyani, N., Rastegar-Pouyani, E. & Andrén, C. Lacertas of South and Central Zagros Mountains, Iran, with descriptions of two new taxa. Russ J. Herpetol. 10, 11–24 (2003).

    Google Scholar 

  • 70.

    Šmíd, J. & Frynta, D. Genetic variability of Mesalina watsonana (Reptilia: Lacertidae) on the Iranian plateau and its phylogenetic and biogeographic affinities as inferred from mtDNA sequences. Acta. Herpetol. 7, 139–153 (2012).

    Google Scholar 

  • 71.

    Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).

    Article  Google Scholar 

  • 72.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 73.

    Isaac, N. J. B., Redding, D. W., Meredith, H. M. & Safi, K. Phylogenetically-Informed Priorities for Amphibian Conservation. PLoS ONE 7, e43912 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Hagen, O. et al. Mountain building, climate cooling and the richness of cold-adapted plants in the Northern Hemisphere. J. Biogeogr. 46, 1792–1807 (2019).

    Article  Google Scholar 

  • 75.

    Noroozi, J., Moser, D. & Essl, F. Diversity, distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. Alp. Bot. 126, 1–9 (2016).

    Article  Google Scholar 

  • 76.

    Noroozi, J., Akhani, H. & Breckle, S. W. Biodiversity and phytogeography of the alpine flora of Iran. Biodivers. Conserv. 17, 493–521 (2008).

    Article  Google Scholar 

  • 77.

    Ahmadzadeh, F. et al. Cryptic speciation patterns in Iranian rock lizards uncovered by Integrative Taxonomy. PLoS ONE 8, e80563 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Darvishzadeh, A. Geology of Iran (Amirkabir Publication, Tehran, 2003).

    Google Scholar 

  • 79.

    Rögl, F. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol. Carpath. 50, 339–349 (1999).

    Google Scholar 

  • 80.

    Okay, A. I., Zattin, M. & Cavazza, W. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38, 35–38 (2010).

    ADS  Article  Google Scholar 

  • 81.

    Girdler, R. W. The evolution of the Gulf of Aden and Red Sea in space and time. Deep-Sea Res. 316, 747–762 (1984).

    ADS  Article  Google Scholar 

  • 82.

    Kehl, M. Quaternary climate change in Iran—the state of knowledge. Erdkunde 63, 1–17 (2009).

    Article  Google Scholar 

  • 83.

    Ehlers, J. & Gibbard, P. L. Quaternary Glaciations Extent and Chronology: Part I: Europe (Elsevier, Amsterdam, 2004).

    Google Scholar 

  • 84.

    Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0–180 W). Quat. Sci. Rev. 23, 529–560 (2004).

    ADS  Article  Google Scholar 

  • 85.

    Nasrabadi, R., Rastegar-Pouyani, N., Rastegar-Pouyani, E. & Gharzi, A. A revised key to the lizards of Iran (Reptilia: Squamata: Lacertilia). Zootaxa 4227, 431–443 (2017).

    Article  Google Scholar 

  • 86.

    Hijmans, R.J., Guarino, L. & Mathur, P. “DIVA-GIS.” https://www.diva-gis.org/documentation (2012).

  • 87.

    Kafash, A., Ashrafi, S., Ohler, A. & Schmidt, B. R. Environmental predictors for the distribution of the Caspian Green Lizard, Lacerta strigata Eichwald, 1831 along elevational gradients of the Elburz Mountains in northern Iran. Turk. J. Zool. 43, 106–113 (2019).

    Article  Google Scholar 

  • 88.

    Descombes, P., Leprieur, F., Albouy, C., Heine, C. & Pellissier, L. Spatial imprints of plate tectonics on extant richness of terrestrial vertebrates. J. Biogeogr. 44, 1185–1197 (2017).

    Article  Google Scholar 

  • 89.

    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-Filled SRTM for the Globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. https://srtm.csi.cgiar.org (2008).

  • 90.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Grünig, M., Beerli, N., Ballesteros-Mejia, L., Kitching, I. J. & Beck, J. How climatic variability is linked to the spatial distribution of range sizes: Seasonality versus climate change velocity in sphingid moths. J. Biogeogr. 44, 2441–2450 (2017).

    Article  Google Scholar 

  • 92.

    Soultan, A., Wikelski, M. & Safi, K. Classifying biogeographic realms of the endemic fauna in the Afro-Arabian region. Ecol Evol. 10, 8669–8680 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).

    Google Scholar 

  • 94.

    Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R package version 3.3-7 (2020).

  • 95.

    van Etten, J. R package gdistance: Distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).

    Google Scholar 

  • 96.

    Bengtsson, H. matrixStats: Functions That Apply to Rows and Columns of Matrices (and to Vectors). R package version 0.56.0. (2020).

  • 97.

    VanDerWal, J. et al. SDMTools: Species Distribution Modelling Tools: Tools for Processing Data Associated with Species Distribution Modelling Exercises. R package ver. 1.1‐221.1. (2019).

  • 98.

    Alavi, M. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 229, 211–238 (1994).

    ADS  Article  Google Scholar 

  • 99.

    Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. Convergence history across Zagros (Iran): constraints from collisional an earlier deformation. Int. J. Earth Sci. 94, 401–419 (2005).

    CAS  Article  Google Scholar 

  • 100.

    Monthereau, F. Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia-Eurasia convergence. Geol. Mag. 148, 726–738 (2011).

    ADS  Article  Google Scholar 

  • 101.

    Rezaeian, M., Carter, A., Hovius, N. & Allen, M. B. Cenozoic exhumation history of the Alborz Mountains, Iran: new constraints from low-temperature chronometry. Tectonics 31, TC004 (2012).

    Article  Google Scholar 

  • 102.

    Madanipour, S., Ehlers, T. A., Yassaghi, A. & Enkelmann, E. Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U-Th/He thermochronometry: evidence for the Arabia-Eurasia collision in the NW Iranian Plateau. Tectonics 36, 1538–1561 (2017).

    ADS  Article  Google Scholar 

  • 103.

    QGIS Development Team. QGIS Geographic Information System (version 3.4.1). Software (2018).

  • 104.

    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  • 105.

    Naimi, B. Uncertainty Analysis for Species Distribution Models. R package version 1.1-15 (2015).

  • 106.

    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 107.

    Broxton, P. D., Zeng, X., Scheftic, W. & Troch, P. A. A MODIS-based global 1-km maximum green vegetation fraction dataset. J. Appl. Meteorol. Clim. 53, 1996–2004 (2014).

    ADS  Article  Google Scholar 

  • 108.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 109.

    Albouy, C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153–1161 (2019).

    PubMed  Article  Google Scholar 

  • 110.

    Olson, D. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  • 111.

    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Solve Challenge Finals go virtual for 2020

    Universities should lead the way on climate action, MIT panelists say