Kasting, J. What caused the rise of atmospheric O2?. Chem. Geol. 362, 13–25 (2013).
Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Org. Geochem. 27(5–6), 185–193 (1997).
Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24(10), 867–870 (1996).
Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106(1–2), 117–134 (2001).
Aharon, P. Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidation events. Precambrian Res. 137, 207–222 (2005).
Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315(4), 275–316 (2015).
Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event). Earth Sci. Rev. 127, 242–261 (2013).
Bekker, A. et al. Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet. Sci. Lett. 271(1–4), 278–291 (2008).
Maheshwari, A. et al. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay. Precambrian Res. 182(4), 274–299 (2010).
Melezhik, V. A., Huhma, H., Condon, D. J., Fallick, A. E. & Whitehouse, M. J. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35(7), 655–658 (2007).
Frauenstein, F., Veizer, J., Beukes, N., Van Niekerk, H. S. & Coetzee, L. L. Transvaal supergroup carbonates: implications for paleoproterozoic δ18O and δ13C records. Precambr. Res. 175, 149–160 (2009).
Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361, 931–950 (2006).
Frimmel, H. E. On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation. Precambrian Res. 182, 239–253 (2010).
Shields, G. A., Brasier, M. D., Stille, P. & Dorjnamjaa, D. I. Factors contributing to high δ13C values in Cryogenian limestones of western Mongolia. Earth Planet. Sci. Lett. 196(3–4), 99–111 (2002).
De PaulaSantos, G. M., Caetano-filho, S., Babinski, M. & Enzweiler, J. Rare elements of carbonate rocks from the Bambui Group, southern Sao Francisco Basin, Brasil, and their significance as paleoenvironmental proxies. Precambrian Res. 305, 327–340 (2017).
Klaebe, R. M., Kennedy, M. J., Jarrett, A. J. M. & Brocks, J. J. Local paleoenvironmental controls on the carbon-isotope record defining the Bitter Springs Anomaly. Geobiology 15(1), 65–80 (2017).
Melezhik, V. A., Fallick, A. E., Medvedev, P. V. & Makarikhin, V. V. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Sci. Rev. 48(1–2), 71–120 (1999).
Blättler, C. L. et al. Two-billion-year-old evaporites capture Earth’s great oxidation. Science 360(6386), 320–323 (2018).
Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s Great Oxidation. Proc. Natl. Acad. Sci. 116(35), 17207–17212 (2019).
Partin, C. A. et al. Uranium in iron formations and the rise of atmospheric oxygen. Chem. Geol. 362, 82–90 (2013).
Kanzaki, Y. & Murakami, T. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 174, 263–290 (2016).
Sheen, A. I. et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227, 75–95 (2018).
Galili, N. et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365(6452), 469–473 (2019).
Knauth, L. P. Temperature and salinity of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005).
Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F. & Robert, F. Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem. Perspect. Lett. 3, 55–65 (2017).
Kasting, J. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005).
Kasting, J. Early Earth: faint young Sun redux. Nature 464(7289), 687 (2010).
Zinke, J., Reijmer, J. J. & Thomassin, B. Systems tracts sedimentology in the lagoon of Mayotte associated with the Holocene transgression. Sed. Geol. 160, 57–79 (2003).
Feuillet, N. MAYOBS1 Cruise, RV Marion Dufresne (Institut de Physique du Globe de Paris, 2019), https://doi.org/https://doi.org/10.17600/18001217
Leboulanger, C. et al. Microbial diversity and cyanobacterial production in Dziani Dzaha crater lake, a unique tropical thalassohaline environment. PLoS ONE 12, e0168879 (2017).
Milesi, V. et al. Formation of Mg-smectite during lacustrine carbonates early diagenesis: study case of the volcanic crater lake Dziani Dzaha (Mayotte – Indian Ocean). Sedimentology (2018).
Gérard, E. et al. Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front. Microbiol. 9, 1–20 (2018).
Cellamare, M. et al. Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). FEMS Microbiol. Ecol. 94(8), 1–25 (2018).
Hugoni, M. et al. Spatiotemporal variations in microbial diversity across the three domains of life in a tropical thalassohaline lake (Dziani Dzaha, Mayotte Island). Molecular Ecology (2018).
Marty, B., Avice, G., Bekaert, D. V. & Broadley, M. W. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. Compte Rendus Geosci. 350(4), 154–163 (2018).
Hay, W. W. et al. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate ocean circulation and life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240(1–2), 3–46 (2006).
Marin-Carbonne, J., Chaussidon, M. & Robert, F. Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochim. Cosmochim. Acta 92, 129–147 (2012).
Marin-Carbonne, J., Robert, F. & Chaussidon, M. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures?. Precambr. Res. 247, 223–234 (2014).
Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560(7719), 471–475 (2018).
Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl. Acad. Sci. 115(16), 4105–4110 (2018).
Stüeken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015).
Bartley, J. K. & Kah, L. C. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32(2), 129–132 (2004).
Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10(2), 135–139 (2017).
Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A. & Katsev, S. Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nat. Geosci. 12(5), 375–380 (2019).
Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7(2), 107–112 (2011).
Reinhard, C. T., Lalonde, S. V. & Lyons, T. W. Oxidative sulfide dissolution on the early Earth. Chem. Geol. 362, 44–55 (2013).
Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110(1–4), 25–57 (2012).
Planavsky, N. J., Bekker, A., Hofmann, A., Owens, J. D. & Lyons, T. W. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl. Acad. Sci. 109(45), 18300–18305 (2012).
Knoll, A. H., Bergmann, K. D. & Strauss, J. V. Life: the first two billion years. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–13 (2016).
Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2014).
Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7(1), 1–7 (2009).
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7(4), 257 (2014).
Peters, S. E., Husson, J. M. & Wilcots, J. The rise and fall of stromatolites in shallow marine environments. Geology 45(6), 487–490 (2017).
Gu, B., Schelske, C. L. & Hodell, D. A. Extreme 13C enrichments in a shallow hypereutrophic lake: implications for carbon cycling. Limnol. Oceanogr. 49, 1152–1159 (2004).
Zhu, Z., Chen, J. A. & Zeng, Y. Abnormal positive δ13C values of carbonates in lake Caohai, southwest China, and their possible relation to lower temperature. Quatern. Int. 288, 85–93 (2013).
Birgel, D. et al. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo- /Neoproterozoic stromatolites?. Geobiology 13, 245–266 (2015).
Valero-Garcés, B. L., Delgado-Huertas, A., Ratto, N. & Navas, A. Large 13C enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina. Earth Planet. Sci. Lett. 171(2), 253–266 (1999).
Anoop, A. et al. Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India. J. Quat. Sci. 28(4), 349–359 (2013).
Talbot, M. R. & Kelts, K. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14(11), 912–916 (1996).
Saba, V. S., Friedrichs, M. A., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. & Ishizaka, J. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences. 2011, 489-503
Lambrecht, N. et al. Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. Geobiology 18(1), 54–69 (2020).
Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18(4), (2004)
Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6(3), eaax5343 (2020).
Caetano-Filho, S., Sansjofre, P., Ader, M., Paula-Santos, G.M., Guacaneme, C., Babinski, M., Bedoya-Rueda, C., Kuchenbecker, M., Reis, H. L. & Trindade R. I. A large epeiric methanogenic Bambuì sea in the core of Gondwana supercontinent? Geosci. Front. (2020)
Karl, D. M. & Knauer, G. A. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep Sea Res. Part A Oceanogr. Res. Papers 38, S921–S942 (1991).
Katsev, S. & Crowe, S. A. Organic carbon burial efficiencies in sediments: the power law of mineralization revisited. Geology 43(7), 607–610 (2015).
Cowie, G. L., Hedges, J. I., Prahl, F. G. & De Lange, G. J. Elemental and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect. Geochim. Cosmochim. Acta 59(1), 33–46 (1995).
Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376(6535), 53–56 (1995).
Kuntz, L. B., Laakso, T. A., Schrag, D. P. & Crowe, S. A. Modeling the carbon cycle in Lake Matano. Geobiology 13(5), 454–461 (2015).
Laakso, T. A. & Schrag, D. P. Methane in the Precambrian atmosphere. Earth Planet. Sci. Lett. 522, 48–54 (2019).
Lambert, M. & Fréchette, J. L. Analytical techniques for measuring fluxes of CO2 and CH4 from hydroelectric reservoirs and natural water bodies. In Greenhouse Gas Emissions—Fluxes and Processes, Springer, Berlin, Heidelberg, 37–60 (2005).
Abril, G. et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem. Cycles 19(4), 1–16 (2005).
Assayag, N., Rivé, K., Ader, M., Jézéquel, D. & Agrinier, P. Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples. Rapid Commun. Mass Spectrom. 20(15), 2243–2251 (2006).
Lebeau, O., Busigny, V., Chaduteau, C. & Ader, M. Organic matter removal for the analysis of carbon and oxygen isotope compositions of siderite. Chem. Geol. 372, 54–61 (2014).
Galès, A., Triplet, S., Geoffroy, T., Roques, C., Carré, C., Le Floc’h, E., Lanfranchi, M., Simier, M., d’Orbcastel, E. R., Przybyla, C. & Fouilland, E. Control of the pH for marine microalgae polycultures: A key point of CO2 fixation improvement in intensive cultures. J. CO2 Util. 38, 187–193 (2020)
Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis (Blackwell Science, Oxford, 1997).
Silsbe, G. M. & Malkin, S. Y. Package “phytotools”: Phytoplankton Production Tools. CRAN library repository. https://cran.r-project.org/package=phytotools (2015).
Eilers, P. H. C. & Peeters, J. C. H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42(3–4), 199–215 (1988).
Kirk, J. T. O. Light and Photosynthesis in Aquatic Environments 3rd edn. (Cambridge University Press, UK, 2010).
Berner, R. A. Early Diagenesis: A Theoretical Approach (Princeton University Press, Princeton, 1980).
Milesi, V. P. et al. Early diagenesis of lacustrine carbonates in volcanic settings: the role of magmatic CO2 (Lake Dziani Dzaha, Mayotte, Indian Ocean). ACS Earth Space Chem. 4(3), 363–378 (2020).
Source: Ecology - nature.com