in

Evidence of unprecedented rise in growth synchrony from global tree ring records

  • 1.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    CAS  Google Scholar 

  • 2.

    Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    CAS  PubMed  Google Scholar 

  • 3.

    Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    CAS  Google Scholar 

  • 4.

    Post, E. & Forchhammer, M. C. Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171 (2002).

    CAS  PubMed  Google Scholar 

  • 5.

    Koenig, W. D. & Liebhold, A. M. Temporally increasing spatial synchrony of North American temperature and bird populations. Nat. Clim. Change 6, 614–617 (2016).

    Google Scholar 

  • 6.

    Shestakova, T. et al. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proc. Natl Acad. Sci. USA 113, 662–667 (2016).

    CAS  PubMed  Google Scholar 

  • 7.

    Black, B. A. et al. Rising synchrony controls western North American ecosystems. Glob. Change Biol. 24, 2305–2314 (2018).

    Google Scholar 

  • 8.

    Heino, M. Noise colour, synchrony and extinctions in spatially structured populations. Oikos 83, 368–375 (1998).

    Google Scholar 

  • 9.

    Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35, 467–490 (2004).

    Google Scholar 

  • 10.

    Gouhier, T. C., Guichard, F. & González, A. Synchrony and stability of food webs in metacommunities. Am. Nat. 175, E16–E34 (2010).

    PubMed  Google Scholar 

  • 11.

    Elton, C. S. Periodic fluctuations in the numbers of animals: their causes and effects. Br. J. Exp. Bot. 2, 119–163 (1924).

    Google Scholar 

  • 12.

    Moran, P. A. P. The statistical analysis of the Canadian lynx cycle. Aust. J. Zool. 1, 291–298 (1953).

    Google Scholar 

  • 13.

    Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).

    PubMed  Google Scholar 

  • 14.

    Buma, B. et al. The value of linking paleoecological and neoecological perspectives to understand spatially-explicit ecosystem resilience. Landsc. Ecol. 34, 17–33 (2018).

    Google Scholar 

  • 15.

    Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. BioScience 67, 271–281 (2017).

    Google Scholar 

  • 16.

    Gajewski, K., Viau, A. E., Sawada, M., Atkinson, D. E. & Fines, P. Synchronicity in climate and vegetation transitions between Europe and North America during the Holocene. Clim. Change 78, 341–361 (2006).

    CAS  Google Scholar 

  • 17.

    Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. https://doi.org/10.1111/jbi.13488 (2018).

  • 18.

    Babst, F., Poulter, B., Bodesheim, P., Mahecha, M. D. & Frank, D. C. Improved tree-ring archives will support earth-system science. Nat. Ecol. Evol. 1, 0008 (2017).

    Google Scholar 

  • 19.

    Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370 (1997).

    Google Scholar 

  • 20.

    Gedalof, Z. E. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob. Biogeochem. Cycles 24, GB3027 (2010).

    Google Scholar 

  • 21.

    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2016).

    Google Scholar 

  • 22.

    Pomara, L. Y. & Zuckerberg, B. Climate variability drives population cycling and synchrony. Divers. Distrib. 23, 421–434 (2017).

    Google Scholar 

  • 23.

    Briffa, M. et al. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia. Phil. Trans. R. Soc. B 363, 2271–2284 (2008).

    PubMed  Google Scholar 

  • 24.

    Ponocná, T. et al. Deviations of treeline Norway spruce radial growth from summer temperatures in East-Central Europe. Agric. Meteorol. 253, 62–70 (2018).

    Google Scholar 

  • 25.

    Shestakova, T. A., Gutiérrez, E., Valeriano, C., Lapshina, E. & Voltas, J. Recent loss of sensitivity to summer temperature constrains tree growth synchrony among boreal Eurasian forests. Agric. Meteorol. 268, 318–330 (2019).

    Google Scholar 

  • 26.

    Schurman, J. S. et al. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob. Change Biol. 24, 2169–2181 (2018).

    Google Scholar 

  • 27.

    Schweingruber, F. H. Tree Rings: Basics and Applications of Dendrochronology (Springer Science & Business Media, 1996).

  • 28.

    Speer, J. H. Fundamentals of Tree-Ring Research (Univ. of Arizona Press, 2010).

  • 29.

    Savolainen, O., Pyhäjärvi, T. & Knürr, T. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 38, 595–619 (2007).

    Google Scholar 

  • 30.

    Ripa, J. Analysing the Moran effect and dispersal: their significance and interaction in synchronous population dynamics. Oikos 89, 175–187 (2000).

    Google Scholar 

  • 31.

    Hopson, J. & Fox, J. W. Occasional long distance dispersal increases spatial synchrony of population cycles. J. Anim. Ecol. 88, 154–163 (2019).

    PubMed  Google Scholar 

  • 32.

    Johnson, C. A. et al. Effects of temperature and resource variation on insect population dynamics: the bordered plant bug as a case study. Funct. Ecol. 30, 1122–1131 (2016).

    PubMed  Google Scholar 

  • 33.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  PubMed  Google Scholar 

  • 34.

    St. George, S. The aberrant global synchrony of present-day warming. Nature 571, 483–484 (2019).

    CAS  PubMed  Google Scholar 

  • 35.

    Neukom, R. et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the common era. Nat. Geosci. 12, 643–649 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl Acad. Sci. USA 116, 2749–2754 (2019).

    PubMed  Google Scholar 

  • 38.

    Duncan, A. B., Gonzalez, A. & Kaltz, O. Dispersal, environmental forcing, and parasites combine to affect metapopulation synchrony and stability. Ecology 96, 284–290 (2015).

    PubMed  Google Scholar 

  • 39.

    Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).

    CAS  PubMed  Google Scholar 

  • 40.

    Manzanedo, R. D. et al. Increase in CO2 concentration could alter the response of Hedera helix to climate change. Ecol. Evol. 8, 8598–8606 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Pederson, N. et al. Long-term drought sensitivity of trees in second-growth forests in a humid region. Can. J. Res. 42, 1837–1850 (2012).

    Google Scholar 

  • 43.

    Kug, J. S., An, S. I., Ham, Y. G. & Kang, I. S. Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theor. Appl. Clim. 100, 275–282 (2010).

    Google Scholar 

  • 44.

    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    CAS  PubMed  Google Scholar 

  • 45.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    CAS  Google Scholar 

  • 46.

    Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Change 3, 1033–1038 (2013).

    Google Scholar 

  • 47.

    Trenberth, K. E., Fasullo, J. T. & Shepherd, T. G. Attribution of climate extreme events. Nat. Clim. Change 5, 725–730 (2015).

    Google Scholar 

  • 48.

    Thurm, E. A. et al. Alternative tree species under climate warming in managed European forests. Ecol. Manage. 430, 485–497 (2018).

    Google Scholar 

  • 49.

    Manzanedo, R. D. & Pederson, N. Towards a more ecological dendroecology. Tree Ring Res. 75, 152–159 (2019).

    Google Scholar 

  • 50.

    Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 5336 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Ettinger, A. K., Kevin, R. F. & HilleRisLambers, J. Climate determines upper, but not lower, altitudinal range limits of Pacific Northwest conifers. Ecology 92, 1323–1331 (2011).

    CAS  PubMed  Google Scholar 

  • 52.

    Grissino-Mayer, H. D. & Fritts, H. C. The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community. Holocene 7, 235–238 (1997).

    Google Scholar 

  • 53.

    Wilson, R. et al. Last millennium Northern Hemisphere summer temperatures from tree rings. Part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).

    Google Scholar 

  • 54.

    Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M. & Cook, E. R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 121, 2060–2074 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).

    PubMed  Google Scholar 

  • 56.

    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Google Scholar 

  • 57.

    R: A Language and Environment for Statistical Computing Version 3.5.0 (R Core Team, 2017).

  • 58.

    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modelling. J. Clim. 19, 3088–3111 (2006).

    Google Scholar 

  • 59.

    Lamarque, J.-F. et al. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geosci. Model Dev. 6, 179–206 (2013).

    CAS  Google Scholar 

  • 60.

    GISTEMP Team GISS Surface Temperature Analysis (GISTEMP) Version 4 (NASA Goddard Institute for Space Studies, accessed 2 July 2018); https://data.giss.nasa.gov/gistemp/


  • Source: Ecology - nature.com

    Universities should lead the way on climate action, MIT panelists say

    Stressor-induced ecdysis and thecate cyst formation in the armoured dinoflagellates Prorocentrum cordatum