in

Stressor-induced ecdysis and thecate cyst formation in the armoured dinoflagellates Prorocentrum cordatum

  • 1.

    Hackett, J. D., Anderson, D. M., Erdner, D. L. & Bhattacharya, D. Dinoflagellates: a remarkable evolutionary experiment. Am. J. Bot. 91, 1523–1534 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Heisler, J. et al. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8, 3–13 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Glibert, P. M. Eutrophication, harmful algae and biodiversity – Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Morrill, L. C. & Loeblich, A. R. The dinoflagellate pellicular wall layer and its occurrence in the division Pyrrhophyta. J. Phycol. 17, 315–323 (1981).

    Article  Google Scholar 

  • 5.

    Morrill, L. C. & Loeblich, A. R. Ultrastructure of the dinoflagellate amphiesma. Int. Rev. Cytol. 82, 151–180 (1983).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Netzel H. & Dürr G. 1984. Dinoflagellate cell cortex in Dinoflagellates (ed. Spector, D. L.) 43–105 (Orlando, Academic Press, 1984).

  • 7.

    Hohfeld, I. & Melkonian, M. Amphiesmal ultrastructure of dinoflagellates – a reevaluation of pellicle formation. J. Phycol. 28, 82–89 (1992).

    Article  Google Scholar 

  • 8.

    Pozdnyakov, I. & Skarlato, S. Dinoflagellate amphiesma at different stages of the life cycle. Protistology 7, 108–115 (2012).

    Google Scholar 

  • 9.

    Morrill, L. C. Ecdysis and the location of the plasma membrane in the dinoflagellate Heterocapsa niei. Protoplasma 119, 8–20 (1984).

    Article  Google Scholar 

  • 10.

    Bricheux, G., Mahoney, D. G. & Gibbs, S. P. Development of the pellicle and thecal plates following ecdysis in the dinoflagellate Glenodinium foliaceum. Protoplasma 168, 159–171 (1992).

    Article  Google Scholar 

  • 11.

    Sekida, A., Horiguchi, T. & Okuda, K. Development of the cell covering in the dinoflagellate Scrippsiella hexapraecingula (Peridiniales, Dinophyceae). Phycol. Res. 49, 163–176 (2001).

    Article  Google Scholar 

  • 12.

    Sekida, S., Horiguchi, T. & Okuda, K. Development of thecal plates and pellicle in the dinoflagellate Scrippsiella hexapraecingula (Peridiniales, Dinophyceae) elucidated by changes in stainability of the associated membranes. Eur. J. Phycol. 39, 105–114 (2004).

    Article  Google Scholar 

  • 13.

    Berdieva, M., Safonov, P. & Matantseva, O. Ultrastructural aspects of ecdysis in the naked dinoflagellate Amphidinium carterae. Protistology 13, 57–63 (2019).

    Article  Google Scholar 

  • 14.

    Bravo, I., Figueroa, R. I., Garces, E., Fraga, S. & Massanet, A. The intricacies of dinoflagellate pellicle cysts: The example of Alexandrium minutum cysts from a bloom-recurrent area (Bay of Baiona, NW Spain). Deep-Sea Res. Pt. II(57), 166–174 (2010).

    ADS  Article  Google Scholar 

  • 15.

    Kalley, J. P. & Bisalputra, T. Initial stages of cell wall formation in dinoflagellate Peridinium trochoideum. Can. J. Bot. 53, 483–494 (1975).

    Article  Google Scholar 

  • 16.

    Kalley, J. P. & Bisalputra, T. Peridinium trochoideum: the fine structure of the thecal plates and associated membranes. J. Ultrastruct. Res. 37, 521–531 (1971).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Adamich, M. & Sweeney, B. M. Preparation and characterization of Gonyaulax spheroplasts. Planta 130, 1–5 (1976).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Dürr, G. Elektronenmikroskopische Untersuchungen am Panzer von dinoflagellaten: I. Gonyaulax polyedra. Arch. Protistenkd. 122, 55–87 (1979).

    Article  Google Scholar 

  • 19.

    Matantseva, O. Cellular mechanisms of dinoflagellate cyst development and ecdysis – many questions to answer. Protistology 13, 47–56 (2019).

    Article  Google Scholar 

  • 20.

    Bravo, I. & Figueroa, R. I. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2, 11–32 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Mardones, J. I. et al. Role of resting cysts in Chilean Alexandrium catenella dinoflagellate blooms revisited. Harmful Algae 55, 238–249 (2016).

    PubMed  Article  Google Scholar 

  • 22.

    Brosnahan, M. L., Ralston, D. K., Fischer, A. D., Solow, A. R. & Anderson, D. M. Bloom termination of the toxic dinoflagellate Alexandrium catenella: Vertical migration behavior, sediment infiltration, and benthic cyst yield. Limnol. Oceanogr. 62, 2829–2849 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Anderson, D. M. & Wall, D. Potential importance of benthic cysts of Gonyaulax tamarensis and Gonyaulax excavata in initiating toxic dinoflagellate blooms. J. Phycol. 14, 224–234 (1978).

    Article  Google Scholar 

  • 24.

    Dale, B. Cysts of toxic red tide dinoflagellate Gonyaulax excavata (Braarud) Balech from Oslofjorden Norway. Sarsia 63, 29–34 (1977).

    Article  Google Scholar 

  • 25.

    Grzebyk, D. & Berland, B. Influences of temperature, salinity and irradiance on growth of Prorocentrum cordatum (Dinophyceae) from the Mediterranean Sea. J. Plankton Res. 18, 1837–1849 (1996).

    Article  Google Scholar 

  • 26.

    Onda, D. F. L., Lluisma, A. O. & Azanza, R. V. Development, morphological characteristics and viability of temporary cysts of Pyrodinium bahamense var compressum (Dinophyceae) in vitro. Eur. J. Phycol. 49, 265–275 (2014).

    CAS  Article  Google Scholar 

  • 27.

    Balzer, I. & Hardeland, R. Photoperiodism and effects of indoleamines in a unicellular alga. Gonyaulax polyedra. Science 253, 795–797 (1991).

    CAS  PubMed  Google Scholar 

  • 28.

    Doucette, G. J., Cembella, A. D. & Boyer, G. L. Cyst formation in the red tide dinoflagellate Alexandrium tamarense (Dinophyceae) – Effects of iron stress. J. Phycol. 25, 721–731 (1989).

    Article  Google Scholar 

  • 29.

    Jensen, M. O. & Moestrup, O. Autecology of the toxic dinoflagellate Alexandrium ostenfeldii: Life history and growth at different temperatures and salinities. Eur. J. Phycol. 32, 9–18 (1997).

    Article  Google Scholar 

  • 30.

    Balzer, I. & Hardeland, R. Effects of indoleamines and short photoperiods on the encystment of Gonyaulax polyedra. Chronobiol. Int. 9, 260–265 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Heil, C. A., Glibert, P. M. & Fan, C. L. Prorocentrum cordatum (Pavillard) Schiller – A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4, 449–470 (2005).

    CAS  Article  Google Scholar 

  • 32.

    Pozdnyakov, I., Matantseva, O., Negulyaev, Y. & Skarlato, S. Obtaining spheroplasts of armored dinoflagellates and first single-channel recordings of their ion channels using patch-clamping. Mar. Drugs 12, 4743–4755 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Berdieva, M., Skarlato, S., Matantseva, O. & Pozdnyakov, I. Mechanical impact on the cell covering fine structure of dinoflagellates Prorocentrum cordatum. Tsitologiia 58, 792–798 (2016).

    CAS  PubMed  Google Scholar 

  • 34.

    Martínez-López, A., Escobedo-Urías, D. C., Ulloa-Pérez, A. E. & Aguirre, R. 2008. Dynamics of a Prorocentrum minimum bloom along the northern coast of Sinaloa, Mexico. Cont. Shelf Res28, 1693–1701 (2008).

  • 35.

    Pollingher, U. & Zemel, E. In situ and experimental evidence of the influence of turbulence on cell division processes of Peridinium cinctum forma westii (Lemm.) Lefevre. Brit. Phycol. 16, 281–287 (1981).

  • 36.

    Berdalet, E. Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii. J. Phycol. 28, 267–272 (1992).

    Article  Google Scholar 

  • 37.

    van de Waal, D. B., Eberlein, T., Bublitz, Y., John, U. & Rost, B. Shake it easy: A gently mixed continuous culture system for dinoflagellates. J. Plankton Res. 36, 889–894 (2014).

    Article  Google Scholar 

  • 38.

    Wyatt, T. & Jenkinson, I. R. Notes on Alexandrium population dynamics. J. Plankton Res. 19, 551–575 (1997).

    Article  Google Scholar 

  • 39.

    Martínez-López, A., Escobedo-Urías, D. C., Ulloa-Pérez, A. E. & Aguirre, R. Dynamics of a Prorocentrum cordatum bloom along the northern coast of Sinaloa Mexico. Cont. Shelf Res. 28, 1693–1701 (2008).

    ADS  Article  Google Scholar 

  • 40.

    Smayda, T. J. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour. Prog. Oceanogr. 85, 71–91 (2010).

  • 41.

    Smayda, T. J. & Trainer, V. L. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog. Oceanogr. 85, 92–107 (2010).

    ADS  Article  Google Scholar 

  • 42.

    Mallipattu, S. K., Haidekker, M., Von Dassow, P., Latz, M. & Frangos, J. Evidence for shear-induced increase in membrane fluidity in the dinoflagellate Lingulodinium polyedrum. J. Comp. Physiol. A 188, 409–416 (2002).

    CAS  Article  Google Scholar 

  • 43.

    Hajdu, S., Edler, L., Olenina, I. & Witek, B. Spreading and establishment of the potentially toxic dinoflagellate Prorocentrum cordatum in the Baltic Sea. Int. Rev. Hydrobiol. 85, 561–575 (2000).

    Article  Google Scholar 

  • 44.

    Tango, P. et al. Impacts and potential effects due to Prorocentrum cordatum blooms in Chesapeake Bay. Harmful Algae 4, 525–531 (2005).

    Article  Google Scholar 

  • 45.

    Telesh, I. V., Schubert, H. & Skarlato, S. O. Ecological niche partitioning of the invasive dinoflagellate Prorocentrum cordatum and its native congeners in the Baltic Sea. Harmful Algae 59, 100–111 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Sapkota, A. et al. Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environ. Int. 34, 1215–1226 (2008).

    PubMed  Article  Google Scholar 

  • 47.

    Harnisz, M., Korzeniewska, E. & Golas, I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere 128, 134–141 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U. S. A. 89, 5547–5551 (1992).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Deuschle, U., Meyer, W. K. H. & Thiesen, H. J. Tetracycline-reversible silencing of eukaryotic promoters. Mol. Cell. Biol. 15, 1907–1914 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Moullan, N. et al. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Rep. 10, 1681–1691 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Mayer, Y. & Herth, W. Chemical inhibition of cell wall formation and cytokinesis, but not of nuclear division, in protoplasts of Nicotinia tabacum L. cultured in vitro. Planta 142, 253–262 (1978).

    Article  Google Scholar 

  • 52.

    Chan, W. S., Kwok, A. C. M. & Wong, J. T. Y. Knockdown of dinoflagellate cellulose synthase CesA1 resulted in malformed Intracellular cellulosic thecal plates and severely Impeded cyst-to-swarmer transition. Front. Microbiol. 10 (2019).

  • 53.

    Kwok, A. C. M. & Wong, J. T. Y. Cellulose synthesis is coupled to cell cycle progression at G(1) in the dinoflagellate Crypthecodinium cohnii. Plant Physiol. 131, 1681–1691 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Figueroa, R. I., Bravo, I. & Garcés, E. Multiple routes of sexuality in Alexandrium taylori (Dinophyceae) in culture. J. Phycol. 42, 1028–1039 (2006).

    Article  Google Scholar 

  • 55.

    Salgado, P., Fraga, S., Rodríguez, F. & Bravo, I. Benthic flattened cells of the phylogenetically related marine dinoflagellates Protoceratium reticulatum and Ceratocorys mariaovidiorum (Gonyaulacales): a new type of cyst?. J. Phycol. 54, 138–149 (2018).

    PubMed  Article  Google Scholar 

  • 56.

    Figueroa, R. I., Garces, E. & Bravo, I. Comparative study of the life cycles of Alexandrium tamutum and Alexandrium minutum (Gonyaulacales, Dinophyceae) in culture. J. Phycol. 43, 1039–1053 (2007).

    Article  Google Scholar 

  • 57.

    Manoharan, K. et al. Acclimation of Prorocentrum cordatum (Dinophyceae) to prolonged darkness by use of an alternative carbon source from triacylglycerides and galactolipids. J. Phycol. 35, 287–292 (1999).

    CAS  Article  Google Scholar 

  • 58.

    Kalinina, V., Matantseva, O., Berdieva, M. & Skarlato, S. Trophic strategies in dinoflagellates: How nutrients pass through the amphiesma. Protistology 12, 3–11 (2018).

    Article  Google Scholar 

  • 59.

    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).

  • 60.

    Fritz, L. & Triemer, R. E. A rapid simple technique utilizing Calcofluor White M2R for the visualization of dinoflagellate thecal plates. J. Phycol. 21, 662–664 (1985).

    Article  Google Scholar 

  • 61.

    Jones, K. H. & Senft, J. A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem. 33, 77–79 (1985).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Kaneshiro, E. S., Wyder, M. A., Wu, Y. P. & Cushion, M. T. Reliability of calcein acetoxy methyl ester and ethidium homodimer or propidium iodide for viability assessment of microbes. J. Microbiol. Meth. 17, 1–16 (1993).

    CAS  Article  Google Scholar 

  • 63.

    Berdieva, M., Pozdnyakov, I., Matantseva, O., Knyazev, N. & Skarlato, S. Actin as a cytoskeletal basis for cell architecture and a protein essential for ecdysis in Prorocentrum minimum (Dinophyceae, Prorocentrales). Phycol. Res. 66, 127–136 (2018).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Moist heat stress extremes in India enhanced by irrigation

    These bizarre ancient species are rewriting animal evolution