in

Pollination and fruit infestation under artificial light at night:light colour matters

  • 1.

    Kyba, C. C. M. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, 1–8 (2017).

    Google Scholar 

  • 2.

    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).

    Google Scholar 

  • 3.

    Bennie, J., Davies, T. W., Cruse, D. & Gaston, K. J. Ecological effects of artificial light at night on wild plants. J. Ecol. 104, 611–620 (2016).

    Google Scholar 

  • 4.

    Grenis, K. & Murphy, S. M. Direct and indirect effects of light pollution on the performance of an herbivorous insect. Insect Sci. 26, 770–776 (2019).

    PubMed  Google Scholar 

  • 5.

    Bennie, J., Davies, T. W., Cruse, D., Inger, R. & Gaston, K. J. Cascading effects of artificial light at night: Resource-mediated control of herbivores in a grassland ecosystem. Phil. Trans. R. Soc. B 370, 1–9 (2015).

    Google Scholar 

  • 6.

    Bennie, J., Gaston, K. J., Davies, T. W., Cruse, D. & Inger, R. Artificial light at night causes top-­down and bottom-up trophic effects on invertebrate populations. J. Appl. Ecol. 55, 2698–2706 (2018).

    CAS  Google Scholar 

  • 7.

    Eisenbeis, G. & Hänel, A. Light pollution and the impact of artificial night lighting on insects. Ecol. Cities Towns Comp. Approach https://doi.org/10.1017/CBO9780511609763.016 (2009).

    Article  Google Scholar 

  • 8.

    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    ADS  CAS  Google Scholar 

  • 10.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).

    Google Scholar 

  • 11.

    Banza, P., Belo, A. D. F. & Evans, D. M. The structure and robustness of nocturnal Lepidopteran pollen-transfer networks in a Biodiversity Hotspot. Insect Conserv. Divers. 8, 538–546 (2015).

    Google Scholar 

  • 12.

    Hahn, M. & Bruhl, C. A. The secret pollinators: An overview of moth pollination with a focus on Europe and North America. Arthropod. Plant. Interact. 10, 21–28 (2016).

    Google Scholar 

  • 13.

    Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Pollination by nocturnal Lepidoptera, and the effects of light pollution: A review. Ecol. Entomol. 40, 187–198 (2015).

    PubMed  Google Scholar 

  • 14.

    van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281 (2011).

    Google Scholar 

  • 15.

    Van Grunsven, R. H. A., Lham, D., Van Geffen, K. G. & Veenendaal, E. M. Range of attraction of a 6-W moth light trap. Entomol. Exp. Appl. 152, 87–90 (2014).

    Google Scholar 

  • 16.

    Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198 (2004).

    Google Scholar 

  • 17.

    Frank, K. D. Impact of outdoor lighting on moths. Int. Astron. Union Colloq. 112, 51 (2016).

    Google Scholar 

  • 18.

    Van Grunsven, R. H. A. et al. Experimental light at night has a negative long-term impact on macro-moth. Curr. Biol. 30, R694–R695 (2020).

    PubMed  Google Scholar 

  • 19.

    Van Langevelde, F., Van Grunsven, R. H. A., Veenendaal, E. M. & Fijen, T. P. M. Artificial night lighting inhibits feeding in moths. Biol. Lett. 13, 2–5 (2017).

    Google Scholar 

  • 20.

    van Geffen, K. G. et al. Artificial light at night inhibits mating in a Geometrid moth. Insect Conserv. Divers. 8, 282–287 (2015).

    Google Scholar 

  • 21.

    Giavi, S., Blösch, S., Schuster, G. & Knop, E. The darkness defeated: artificial light at night modifies ecosystem functioning beyond the lit area. Sci. Rep. 10, 1–11 (2020).

    Google Scholar 

  • 22.

    Fatzinger, C. W. Circadian rhythmicity of sex pheromone release by Dioryctria abietella (Lepidoptera: Pyralidae (Phycitinae)) and the effect of a diel light cycle on its precopulatory behavior. Ann. Entomol. Soc. Am. 66, 1147–1153 (1973).

    Google Scholar 

  • 23.

    Sower, L. L., Shorey, H. H. & Gaston, L. K. Sex pheromones of noctuid moths. XXI. Light:dark cycle regulation and light inhibition of sex pheromone release by females of Trichoplusia ni. Ann. Entomol. Soc. Am. 63, 1090–1092 (1970).

    CAS  PubMed  Google Scholar 

  • 24.

    Shorey, H. H. & Gaston, L. K. Sex pheromones of noctuid moths. III. Inhibition of male responses to the sex pheromone in Trichoplusia ni (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 57, 775–779 (1964).

    Google Scholar 

  • 25.

    Donners, M. et al. Colors of attraction: Modeling insect flight to light behavior. J. Exp. Zool. Part A Ecol. Integr. Physiol. 329, 434–440 (2018).

    Google Scholar 

  • 26.

    Bernasconi, G. et al. Silene as a model system in ecology and evolution. Heredity (Edinb). 103, 5–14 (2009).

    CAS  PubMed  Google Scholar 

  • 27.

    Labouche, A. M. & Bernasconi, G. Male moths provide pollination benefits in the Silene latifoliaHadena bicruris nursery pollination system. Funct. Ecol. 24, 534–544 (2010).

    Google Scholar 

  • 28.

    Biere, A. & Honders, S. C. Coping with third parties in a nursery pollination mutualism: Hadena bicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia. New Phytol. 169, 719–727 (2006).

    PubMed  Google Scholar 

  • 29.

    Spoelstra, K. et al. Experimental illumination of natural habitat—An experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Phil. Trans. R. Soc. B 370, 20140129 (2015).

    PubMed  Google Scholar 

  • 30.

    Poot, H. et al. Green light for nocturnally migrating birds. Ecol. Soc. 13, 1–14 (2008).

    Google Scholar 

  • 31.

    Jalas, J. & Suominen, J. Atlas Florae Europaeae: Distribution of Vascular Plants in Europe Vol. 3 (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  • 32.

    Karrenberg, S. & Favre, A. Genetic and ecological differentiation in the hybridizing campions Silene dioica and S. latifolia. Evolution N. Y. 62, 763–773 (2008).

    Google Scholar 

  • 33.

    Elzinga, J. A., Turin, H., van Damme, J. M. M. & Biere, A. Plant population size and isolation affect herbivory of Silene latifolia by the specialist herbivore Hadena bicruris and parasitism of the herbivore by parasitoids. Oecologia 144, 416–426 (2005).

    ADS  PubMed  Google Scholar 

  • 34.

    WinSEEDLE Pro 2019a (Regent Instruments Inc., 2018).

  • 35.

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2020).

    Google Scholar 

  • 36.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

    Google Scholar 

  • 37.

    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.1.3. https://CRAN.R-project.org/package=emmeans (2019).


  • Source: Ecology - nature.com

    Moist heat stress extremes in India enhanced by irrigation

    These bizarre ancient species are rewriting animal evolution