in

The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems

  • 1.

    Arrigo, K. R. in Sea Ice (Ed. Thomas, D. N.) 352–369 (John Wiley & Sons, Ltd, 2017).

  • 2.

    Steiner, N. S. et al. Impacts of the changing ocean-sea ice system on the key forage fish Arctic cod (Boreogadus saida) and subsistence fisheries in the western Canadian Arctic—evaluating linked climate, ecosystem and economic (CEE) models. Front. Mar. Sci. 6, 179 (2019).

    Article  Google Scholar 

  • 3.

    Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).

    CAS  Article  Google Scholar 

  • 4.

    Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).

    CAS  Article  Google Scholar 

  • 5.

    Riebesell, U., Schloss, I. & Smetacek, V. Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol. 11, 239–248 (1991).

    Article  Google Scholar 

  • 6.

    MacGilchrist, G. A. et al. The Arctic Ocean carbon sink. Deep. Res. Part I Oceanogr. Res. Pap. 86, 39–55 (2014).

    CAS  Article  Google Scholar 

  • 7.

    Bates, N. R. & Mathis, J. T. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6, 2433–2459 (2009).

    CAS  Article  Google Scholar 

  • 8.

    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Meier, W. N. et al. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217 (2014).

    Article  Google Scholar 

  • 10.

    Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).

    Article  Google Scholar 

  • 11.

    Maslanik, J., Stroeve, J., Fowler, C. & Emery, W. Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett. 38, L13502 (2011).

    Article  Google Scholar 

  • 12.

    Stroeve, J. C., Crawford, A. D. & Stammerjohn, S. Using timing of ice retreat to predict timing of fall freeze-up in the Arctic. Geophys. Res. Lett. 43, 6332–6340 (2016).

    Article  Google Scholar 

  • 13.

    Webster, M. A. et al. Interdecadal changes in snow depth on Arctic sea ice. J. Geophys. Res. Ocean. 119, 5395–5406 (2014).

    Article  Google Scholar 

  • 14.

    Strong, C. & Rigor, I. G. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophys. Res. Lett. 40, 4864–4868 (2013).

    Article  Google Scholar 

  • 15.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

  • 16.

    Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett. 40, 2097–2101 (2013).

    Article  Google Scholar 

  • 17.

    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).

    Article  Google Scholar 

  • 18.

    Vancoppenolle, M. et al. Role of sea ice in global biogeochemical cycles: emerging views and challenges. Quat. Sci. Rev. 79, 207–230 (2013).

    Article  Google Scholar 

  • 19.

    Berge, J. et al. In the dark: a review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. 139, 258–271 (2015).

    Article  Google Scholar 

  • 20.

    Leu, E. et al. Arctic spring awakening — steering principles behind the phenology of vernal ice algal blooms. Prog. Oceanogr. 139, 151–170 (2015).

    Article  Google Scholar 

  • 21.

    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).

    CAS  Article  Google Scholar 

  • 22.

    Perovich, D. K. Sea Ice (Ed. Thomas, D. N.) 110–137 (John Wiley & Sons, Ltd, 2017).

  • 23.

    Nicolaus, M., Katlein, C., Maslanik, J. A. & Hendricks, S. Solar Radiation Over and Under Sea Ice During the POLARSTERN Cruise ARK-XXVI/3 (TransArc) in Summer 2011 (PANGAEA, 2011); https://doi.pangaea.de/10.1594/PANGAEA.786717

  • 24.

    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408 (2012).

    CAS  Article  Google Scholar 

  • 25.

    Pistone, K., Eisenman, I. & Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl Acad. Sci. USA 111, 3322–3326 (2014).

    CAS  Article  Google Scholar 

  • 26.

    Horvat, C. et al. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Sci. Adv. 3, e1601191 (2017).

    Article  Google Scholar 

  • 27.

    El-Sayed, S. Z., Van Dijken, G. L. & Gonzalez-Rodas, G. Effects of ultraviolet radiation on marine ecosystems. Int. J. Environ. Stud. 51, 199–216 (1996).

    CAS  Article  Google Scholar 

  • 28.

    Elliott, A. et al. Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic. Mar. Ecol. Prog. Ser. 541, 91–104 (2015).

    CAS  Article  Google Scholar 

  • 29.

    Ryan, K. G., Mcminn, A., Hegseth, E. N. & Davy, S. K. The effects of ultraviolet-b radiation on antarctic sea-ice algae. J. Phycol. 48, 74–84 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).

    Article  Google Scholar 

  • 31.

    Gradinger, R. Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep. Res. Part II Top. Stud. Oceanogr. 56, 1201–1212 (2009).

    CAS  Article  Google Scholar 

  • 32.

    Tremblay, J.-E. & Gagnon, J. in Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions (eds Nihoul, J. C. J. & Kostianoy, A. G.) 73–93 (Springer, 2009).

  • 33.

    Nomura, D. et al. Nutrient distributions associated with snow and sediment-laden layers in sea ice of the southern Sea of Okhotsk. Mar. Chem. 119, 1–8 (2010).

    CAS  Article  Google Scholar 

  • 34.

    Meiners, K. M. & Michel, C. in Sea Ice (Ed. Thomas, D. N.) 415–432 (John Wiley & Sons, Ltd, 2017).

  • 35.

    Fripiat, F. et al. Macro-nutrient concentrations in Antarctic pack ice: overall patterns and overlooked processes. Elem. Sci. Anth. 5, p13 (2017).

    Article  Google Scholar 

  • 36.

    Tremblay, J. É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).

    Article  Google Scholar 

  • 37.

    Miller, J. R. & Russell, G. L. Projected impact of climate change on the freshwater and salt budgets of the Arctic Ocean by a global climate model. Geophys. Res. Lett. 27, 1183–1186 (2000).

    Article  Google Scholar 

  • 38.

    Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173 (2002).

    CAS  Article  Google Scholar 

  • 39.

    Rainville, L., M. Lee, C. & Woodgate, A. R. Impact of wind-driven mixing in the Arctic Ocean. Oceanography 24, 136–145 (2011).

    Article  Google Scholar 

  • 40.

    Lamarque, J. F. et al. Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).

    Article  CAS  Google Scholar 

  • 41.

    Stroeve, J. C., Markus, T., Boisvert, L., Miller, J. & Barrett, A. Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett. 41, 1216–1225 (2014).

    Article  Google Scholar 

  • 42.

    Tedesco, L., Vichi, M. & Scoccimarro, E. Sea-ice algal phenology in a warmer Arctic. Sci. Adv. 5, eaav4830 (2019).

    CAS  Article  Google Scholar 

  • 43.

    van Leeuwe, M. A. et al. Microalgal community structure and primary production in Arctic and Antarctic sea ice: a synthesis. Elem. Sci. Anth. https://doi.org/10.1525/elementa.267 (2018).

  • 44.

    Hardge, K. et al. Sea ice origin and sea ice retreat as possible drivers of variability in Arctic marine protist composition. Mar. Ecol. Prog. Ser. 571, 43–57 (2017).

    CAS  Article  Google Scholar 

  • 45.

    Campbell, K., Mundy, C. J., Belzile, C., Delaforge, A. & Rysgaard, S. Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol. 41, 41–58 (2018).

    Article  Google Scholar 

  • 46.

    Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).

    Article  Google Scholar 

  • 47.

    Fernández-Méndez, M. et al. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean. PLoS ONE 9, e107452 (2014).

    Article  CAS  Google Scholar 

  • 48.

    Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).

    Article  Google Scholar 

  • 49.

    Wassmann, P. & Reigstad, M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24, 220–231 (2011).

    Article  Google Scholar 

  • 50.

    Dalman, L. et al. Enhanced bottom-ice algal biomass across a tidal strait in the Kitikmeot Sea of the Canadian Arctic. Elem. Sci. Anth. 7, p22 (2019).

    Article  Google Scholar 

  • 51.

    Williams, W. et al. Joint effects of wind and ice motion in forcing upwelling in Mackenzie Trough, Beaufort Sea. Cont. Shelf Res. 26, 2352–2366 (2006).

    Article  Google Scholar 

  • 52.

    Ardyna, M. et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem. Sci. Anth. 8, 30 (2020).

    Article  Google Scholar 

  • 53.

    Eronen-Rasimus, E. et al. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice. FEMS Microbiol. Ecol. 91, 1–13 (2015).

    Article  CAS  Google Scholar 

  • 54.

    Bowman, J. S. The relationship between sea ice bacterial community structure and biogeochemistry: a synthesis of current knowledge and known unknowns. Elem. Sci. Anthr. 3, 000072 (2015).

    Article  Google Scholar 

  • 55.

    Eronen-Rasimus, E. et al. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community. ISME J. 11, 2345–2355 (2017).

    CAS  Article  Google Scholar 

  • 56.

    Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).

    CAS  Article  Google Scholar 

  • 57.

    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).

    Article  Google Scholar 

  • 58.

    Søreide, J. E., Leu, E. V. A., Berge, J., Graeve, M. & Falk-Petersen, S. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob. Chang. Biol. 16, 3154–3163 (2010).

    Google Scholar 

  • 59.

    Eriksen, E., Skjoldal, H. R., Gjøsæter, H. & Primicerio, R. Spatial and temporal changes in the Barents Sea pelagic compartment during the recent warming. Prog. Oceanogr. 151, 206–226 (2017).

    Article  Google Scholar 

  • 60.

    David, C., Lange, B., Rabe, B. & Flores, H. Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar. Ecol. Prog. Ser. 522, 15–32 (2015).

    Article  Google Scholar 

  • 61.

    Melnikov, I. Recent Arctic sea-ice ecosystem: dynamics and forecast. Dokl. Earth Sci. 423, 1516–1519 (2008).

    Article  CAS  Google Scholar 

  • 62.

    Haug, T. et al. Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: a review of possibilities and constraints. Fish. Res. 188, 38–57 (2017).

    Article  Google Scholar 

  • 63.

    Kędra, M. et al. Status and trends in the structure of Arctic benthic food webs. Polar Res. 34, 23775 (2015).

    Article  Google Scholar 

  • 64.

    Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M. & Pedersen, M. F. Arctic kelp forests: diversity, resilience and future. Glob. Planet. Change 172, 1–14 (2019).

    Article  Google Scholar 

  • 65.

    Murillo, F. J. et al. Sponge assemblages and predicted archetypes in the eastern Canadian Arctic. Mar. Ecol. Prog. Ser. 597, 115–135 (2018).

    Article  Google Scholar 

  • 66.

    Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Predictions replaced by facts: a keystone species’ behavioural responses to declining arctic sea-ice. Biol. Lett. 11, 20150803 (2015).

    Article  CAS  Google Scholar 

  • 67.

    O’Corry-Crowe, G. et al. Genetic profiling links changing sea-ice to shifting beluga whale migration patterns. Biol. Lett. 12, 20160404 (2016).

    Article  Google Scholar 

  • 68.

    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago — Svalbard, Norway. Glob. Chang. Biol. 23, 490–502 (2017).

    Article  Google Scholar 

  • 69.

    Wollenburg, J. E. et al. Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom. Sci. Rep. 8, 7703 (2018).

    CAS  Article  Google Scholar 

  • 70.

    Darnis, G. & Fortier, L. Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean). J. Geophys. Res. 117, C04013 (2012).

    Google Scholar 

  • 71.

    Darnis, G. et al. From polar night to midnight sun: diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol. Oceanogr. 62, 1586–1605 (2017).

    CAS  Article  Google Scholar 

  • 72.

    Wiedmann, I., Reigstad, M., Sundfjord, A. & Basedow, S. Potential drivers of sinking particle’s size spectra and vertical flux of particulate organic carbon (POC): turbulence, phytoplankton, and zooplankton. J. Geophys. Res. Ocean. 119, 6900–6917 (2014).

    CAS  Article  Google Scholar 

  • 73.

    Flores, H. et al. Sea-ice properties and nutrient concentration as drivers of the taxonomic and trophic structure of high-Arctic protist and metazoan communities. Polar Biol. 42, 1377–1395 (2019).

    Article  Google Scholar 

  • 74.

    Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).

    CAS  Article  Google Scholar 

  • 75.

    Lalande, C. et al. Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Global Biogeochem. Cycles 28, 571–583 (2014).

    CAS  Article  Google Scholar 

  • 76.

    Miller, L. A., Carnat, G., Else, B. G. T., Sutherland, N. & Papakyriakou, T. N. Carbonate system evolution at the Arctic Ocean surface during autumn freeze-up. J. Geophys. Res. Ocean. 116, C00G04 (2011).

    Article  CAS  Google Scholar 

  • 77.

    Dieckmann, G. S. et al. Brief Communication: ikaite (CaCO3·6H2O) discovered in Arctic sea ice. Cryosphere 4, 227–230 (2010).

    Article  Google Scholar 

  • 78.

    Rysgaard, S. et al. Ikaite crystals in melting sea ice — implications for pCO2 and pH levels in Arctic surface waters. Cryosphere 6, 901–908 (2012).

    Article  Google Scholar 

  • 79.

    Nomura, D. et al. CO2 flux over young and snow-covered Arctic pack ice in winter and spring. Biogeosciences 15, 3331–3343 (2018).

    CAS  Article  Google Scholar 

  • 80.

    König, D., Miller, L. A., Simpson, K. G. & Vagle, S. Carbon dynamics during the formation of sea ice at different growth rates. Front. Earth Sci. 6, 234 (2018).

    Article  Google Scholar 

  • 81.

    Grimm, R., Notz, D., Glud, R. N., Rysgaard, S. & Six, K. D. Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice-biogeochemical model (MPIOM/HAMOCC). Elem. Sci. Anthr. 4, 000136 (2016).

    Article  Google Scholar 

  • 82.

    Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. & Christensen, P. B. Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. J. Geophys. Res. 112, C03016 (2007).

    Google Scholar 

  • 83.

    Manizza, M. et al. Changes in the Arctic Ocean CO2 sink (1996–2007): a regional model analysis. Global Biogeochem. Cycles 27, 1108–1118 (2013).

    CAS  Article  Google Scholar 

  • 84.

    Mortenson, E. Modelling carbon exchange in the air, sea, and ice of the Arctic Ocean. PhD thesis, Univ. of Victoria (2019).

  • 85.

    Fransson, A. et al. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: implications for sea-air CO2 fluxes. J. Geophys. Res. Ocean. 122, 5566–5587 (2017).

    CAS  Article  Google Scholar 

  • 86.

    Mathis, J. T. et al. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states. Geophys. Res. Lett. 39, L07606 (2012).

    Article  CAS  Google Scholar 

  • 87.

    Pipko, I. I., Semiletov, I. P., Pugach, S. P., Wählstrãm, I. & Anderson, L. G. Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea. Biogeosciences 8, 1987–2007 (2011).

    CAS  Article  Google Scholar 

  • 88.

    Steiner, N. et al. What sea-ice biogeochemical modellers need from observers. Elementa 4, 000084 (2016).

    Google Scholar 

  • 89.

    Cai, W.-J. et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin. Science 329, 556–559 (2010).

    CAS  Article  Google Scholar 

  • 90.

    Else, B. et al. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss. Geophys. Res. Lett. 40, 1132–1137 (2013).

    CAS  Article  Google Scholar 

  • 91.

    Fransson, A. et al. CO2-system development in young sea ice and CO2 gas exchange at the ice/air interface mediated by brine and frost flowers in Kongsfjorden, Spitsbergen. Ann. Glaciol. 56, 245–257 (2015).

    Article  Google Scholar 

  • 92.

    Geilfus, N. X. et al. First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth. J. Geophys. Res. Ocean. 118, 244–255 (2013).

    CAS  Article  Google Scholar 

  • 93.

    Brown, K. A. et al. Inorganic carbon system dynamics in landfast Arctic sea ice during the early-melt period. J. Geophys. Res. Ocean. 120, 3542–3566 (2015).

    CAS  Article  Google Scholar 

  • 94.

    Damm, E., Rudels, B., Schauer, U., Mau, S. & Dieckmann, G. Methane excess in Arctic surface water- triggered by sea ice formation and melting. Sci. Rep. 5, 16179 (2015).

    CAS  Article  Google Scholar 

  • 95.

    Kort, E. A. et al. Atmospheric observations of Arctic Ocean methane emissions up to 82° north. Nat. Geosci. 5, 318–321 (2012).

    CAS  Article  Google Scholar 

  • 96.

    Tison, J.-L. Biogeochemical impact of snow cover and cyclonic intrusions on the winter weddell sea ice pack. J. Geophys. Res. Ocean. 122, 7291–7311 (2017).

    Article  Google Scholar 

  • 97.

    AMAP Assessment 2015: Methane as an Arctic Climate Forcer (AMAP, 2015).

  • 98.

    Zhou, J. et al. Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): insights on brine and gas dynamics across seasons. J. Geophys. Res. Ocean. 118, 3172–3189 (2013).

    CAS  Article  Google Scholar 

  • 99.

    Levasseur, M. Impact of Arctic meltdown on the microbial cycling of sulphur. Nat. Geosci. 6, 691–700 (2013).

    CAS  Article  Google Scholar 

  • 100.

    Hayashida, H. et al. Implications of sea-ice biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic. Biogeosciences 14, 3129–3155 (2017).

    CAS  Article  Google Scholar 

  • 101.

    Abbatt, J. P. D. et al. Overview paper: new insights into aerosol and climate in the Arctic. Atmos. Chem. Phys. 19, 2527–2560 (2019).

    Article  CAS  Google Scholar 

  • 102.

    Galindo, V. et al. Biological and physical processes influencing sea ice, under-ice algae, and dimethylsulfoniopropionate during spring in the Canadian Arctic Archipelago. J. Geophys. Res. Ocean. 119, 3746–3766 (2014).

    CAS  Article  Google Scholar 

  • 103.

    Simpson, W. R. et al. Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 7, 4375–4418 (2007).

    CAS  Article  Google Scholar 

  • 104.

    Jacobi, H.-W., Morin, S. & Bottenheim, J. W. Observation of widespread depletion of ozone in the springtime boundary layer of the central Arctic linked to mesoscale synoptic conditions. J. Geophys. Res. Atmos. 115, 17302 (2010).

    Article  CAS  Google Scholar 

  • 105.

    Abbatt, J. P. D. et al. Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmos. Chem. Phys. 12, 6237–6271 (2012).

    CAS  Article  Google Scholar 

  • 106.

    Frey, M. M. et al. First direct observation of sea salt aerosol production from blowing snow above sea ice. Atmos. Chem. Phys. 20, 2549–2578 (2020).

    CAS  Article  Google Scholar 

  • 107.

    Tarasick, D. W. & Bottenheim, J. W. Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records. Atmos. Chem. Phys. 2, 197–205 (2002).

    CAS  Article  Google Scholar 

  • 108.

    Kiko, R., Kern, S., Kramer, M. & Mütze, H. Colonization of newly forming Arctic sea ice by meiofauna: a case study for the future Arctic? Polar Biol. 40, 1277–1288 (2017).

    Article  Google Scholar 

  • 109.

    Steiner, N. & Stefels, J. Commentary on the outputs and future of Biogeochemical Exchange Processes at Sea-Ice Interfaces (BEPSII). Elem. Sci. Anth. 5, 81 (2017).

    Article  Google Scholar 

  • 110.

    Echeveste, P., Agustí, S. & Dachs, J. Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. Environ. Pollut. 158, 299–307 (2010).

    CAS  Article  Google Scholar 

  • 111.

    Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505 (2018).

    Article  CAS  Google Scholar 

  • 112.

    Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Futur. 2, 315–320 (2014).

    Article  Google Scholar 

  • 113.

    Steiner, N. S., Christian, J. R., Six, K. D., Yamamoto, A. & Yamamoto-Kawai, M. Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models. J. Geophys. Res. Ocean. 119, 332–347 (2014).

    CAS  Article  Google Scholar 

  • 114.

    Fransson, A. et al. Impact of sea-ice processes on the carbonate system and ocean acidification at the ice-water interface of the Amundsen Gulf, Arctic Ocean. J. Geophys. Res. Ocean. 118, 7001–7023 (2013).

    CAS  Article  Google Scholar 

  • 115.

    Geilfus, N.-X. et al. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice–seawater mesocosm. Cryosphere 10, 2173–2189 (2016).

    Article  Google Scholar 

  • 116.

    Moreau, S. et al. Assessment of the sea-ice carbon pump: Insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES). Elementa 4, 000122 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Moist heat stress extremes in India enhanced by irrigation

    These bizarre ancient species are rewriting animal evolution