in

Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA

  • 1.

    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352 (2016).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Ahmadalipour, A., Moradkhani, H. & Svoboda, M. Centennial drought outlook over the CONUS using NASA-NEX downscaled climate ensemble. Int. J. Climatol. 37, 2477–2491 (2017).

    Article  Google Scholar 

  • 3.

    Yu, M., Li, Q., Hayes, M. J., Svoboda, M. D. & Heim, R. R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010?. Int. J. Climatol. 34, 545–558 (2014).

    CAS  Article  Google Scholar 

  • 4.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article  Google Scholar 

  • 5.

    Huang, C. Y. & Anderegg, W. R. L. Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Glob. Chang. Biol. 18, 1016–1027 (2012).

    ADS  Article  Google Scholar 

  • 6.

    Simeone, C. et al. Coupled ecohydrology and plant hydraulics modeling predicts ponderosa pine seedling mortality and lower treeline in the US Northern Rocky Mountains. New Phytol. 221, 1814–1830 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science (80-. ). 349, 528–532 (2015).

  • 8.

    Yu, Z. et al. Global gross primary productivity and water use efficiency changes under drought stress. Environ. Res. Lett. 12 (2017).

  • 9.

    Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M. & Mu, Q. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: Implications for groundwater decline in a drying climate. Glob. Chang. Biol. 19, 2401–2412 (2013).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Kath, J. et al. Groundwater salinization intensifies drought impacts in forests and reduces refuge capacity. J. Appl. Ecol. 52, 1116–1125 (2015).

    CAS  Article  Google Scholar 

  • 11.

    Hoylman, Z. H. et al. The topographic signature of ecosystem climate sensitivity in the western United States. Geophys. Res. Lett. 46, 14508–14520 (2019).

    ADS  Article  Google Scholar 

  • 12.

    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).

    ADS  Article  Google Scholar 

  • 13.

    Chaves, M. M., Maroco, J. P. & Pereira, J. S. Understanding plant responses to drought: From genes to the whole plant. Funct. Plant Biol. 30, 239–264 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Maherali, H., Pockman, W. & Jackson, R. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199 (2004).

    Article  Google Scholar 

  • 15.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Yang, Y. et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 6, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 17.

    Malone, S. L. et al. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery. Ecosphere 7, 1–19 (2016).

    ADS  Article  Google Scholar 

  • 18.

    Ponce Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 349–352 (2013).

  • 19.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Ahmadi, B., Ahmadalipour, A., Tootle, G. & Moradkhani, H. Remote sensing of water use efficiency and terrestrial drought recovery across the Contiguous United States. Remote Sens. 11 (2019).

  • 22.

    Barnes, M. L. et al. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes. Ecosphere 7, e01339 (2016).

    Article  Google Scholar 

  • 23.

    Susan Moran, M. et al. Functional response of U.S. grasslands to the early 21st-century drought. Ecology 95, 2121–2133 (2014).

  • 24.

    Zhang, Y., Voigt, M. & Liu, H. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest. Biogeosciences 12, 549–556 (2015).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    ADS  Article  Google Scholar 

  • 26.

    Zhang, Y. et al. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes. J. Geophys. Res. Biogeosci. 118, 148–157 (2013).

    ADS  Article  Google Scholar 

  • 27.

    Norman, S., Koch, F. & Hargrove, W. Detecting and monitoring large-scale drought effects on forests: Toward an integrated approach. in Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis. General Technical Report WO-93b (eds. Vose, J., Clark, J., Luce, C. & Patel-Weynand, T.) 195–230 (U.S. Forest Service, 2015).

  • 28.

    Sims, D. A., Brzostek, E. R. & Rahman, A. F. An improved approach for remotely sensing water stress impacts on forest C uptake. Glob. Chang. Biol. 1–11, https://doi.org/10.1111/gcb.12537 (2014).

  • 29.

    Brodrick, P. G., Anderegg, L. D. L. & Asner, G. P. Forest drought resistance at large geographic scales. Geophys. Res. Lett. 46, 2752–2760 (2019).

    ADS  Article  Google Scholar 

  • 30.

    Ma, X., Huete, A., Moran, S., Ponce-Campos, G. & Eamus, D. Abrupt shifts in phenology and vegetation productivity under climate extremes. J. Geophys. Res. Biogeosci. 120, 2036–2052 (2015).

    Article  Google Scholar 

  • 31.

    McLaughlin, B. et al. Hydrologic refugia, plants and climate change. Glob. Chang. Biol. 23, 1–21 (2017).

    Article  Google Scholar 

  • 32.

    Tague, C. L. & Moritz, M. A. Plant accessible water storage capacity and tree-scale root interactions determine how forest density reductions alter forest water use and productivity. Front. For. Glob. Chang. 2, 1–18 (2019).

    Article  Google Scholar 

  • 33.

    Peterman, W., Waring, R., Seager, T. & Pollock, W. Soil properties affect pinyon pine–juniper response to drought. Ecohydrology 6, 455–463 (2013).

    Article  Google Scholar 

  • 34.

    Law, B. E. & Waring, R. H. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Manag. 355, 4–14 (2015).

    Article  Google Scholar 

  • 35.

    Marlier, M. E. et al. The 2015 drought in Washington State: A harbinger of things to come? Environ. Res. Lett. 12 (2017).

  • 36.

    Buttrick, S. et al. Conserving Nature’s Stage: Identifying Resilient Terrestrial Landscapes in the Pacific Northwest. (The Nature Conservancy, 2015).

  • 37.

    Potithep, S., Nasahara, N. K., Muraoka, H., Nagai, S. & Suzuki, R. What is the actual relationship between LAI and VI in a deciduous broadleaf forest? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 38, 609–614 (2010).

  • 38.

    Bigler, C., Gavin, D. G., Gunning, C. & Veblen, T. T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116, 1983–1994 (2007).

    Article  Google Scholar 

  • 39.

    Berdanier, A. & Clark, J. Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests. Ecol. Appl. 26, 17–23 (2016).

  • 40.

    Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).

    Article  Google Scholar 

  • 41.

    Assal, T. J., Anderson, P. J. & Sibold, J. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. For. Ecol. Manag. 365, 137–151 (2016).

    Article  Google Scholar 

  • 42.

    Guarín, A. & Taylor, A. H. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For. Ecol. Manag. 218, 229–244 (2005).

    Article  Google Scholar 

  • 43.

    Crausbay, S. D. et al. Defining ecological drought for the twenty-first century. Bull. Am. Meteorol. Soc. 98, 2543–2550 (2017).

    ADS  Article  Google Scholar 

  • 44.

    Van Loon, A. F. Hydrological drought explained. WIREs. Water 2, 359–392 (2015).

    ADS  Google Scholar 

  • 45.

    Peterman, W., Waring, R. H., Seager, T. & Pollock, W. L. Soil properties affect pinyon pine-juniper response to drought. Ecohydrology 6, 455–463 (2013).

    Article  Google Scholar 

  • 46.

    Mildrexler, D., Yang, Z., Cohen, W. B. & Bell, D. M. A forest vulnerability index based on drought and high temperatures. Remote Sens. Environ. 173, 314–325 (2016).

    ADS  Article  Google Scholar 

  • 47.

    Berner, L. T. & Law, B. E. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon. Biogeosci. Discuss. 12, 14507–14553 (2015).

    ADS  Article  Google Scholar 

  • 48.

    Kerns, B. K., Powell, D. C., Mellmann-Brown, S., Carnwath, G. & Kim, J. B. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA. Clim. Serv. 10, 33–43 (2018).

    Article  Google Scholar 

  • 49.

    Michalak, J. L., Withey, J. C., Lawler, J. J. & Case, M. J. Future climate vulnerability—Evaluating multiple lines of evidence. Front. Ecol. Environ. 15, 367–376 (2017).

    Article  Google Scholar 

  • 50.

    Young, D. J. N. et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 20, 78–86 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Clifford, M. J., Cobb, N. S. & Buenemann, M. Long-term tree cover dynamics in a pinyon-juniper woodland: climate-change-type drought resets successional clock. Ecosystems 14, 949–962 (2011).

    Article  Google Scholar 

  • 52.

    Baker, W. L. Transitioning western U.S. dry forests to limited committed warming with bet-hedging and natural disturbances. Ecosphere 9 (2018).

  • 53.

    Walck, J. L., Hidayati, S. N., Dixon, K. W., Thompson, K. & Poschlod, P. Climate change and plant regeneration from seed. Glob. Chang. Biol. 17, 2145–2161 (2011).

    ADS  Article  Google Scholar 

  • 54.

    Krawchuk, M. A. et al. Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Front. Ecol. Environ. 18, 235–244 (2020).

    Article  Google Scholar 

  • 55.

    Cartwright, J. Landscape topoedaphic features create refugia from drought and insect disturbance in a lodgepole and whitebark pine forest. Forests 9, 715 (2018).

    Article  Google Scholar 

  • 56.

    Millar, C. I. et al. Do low-elevation ravines provide climate refugia for subalpine limber pine (Pinus flexilis) in the Great Basin, USA?. Can. J. For. Res. 48, 663–671 (2018).

    Article  Google Scholar 

  • 57.

    Jaeger, K. L. et al. Probability of streamflow permanence model (PROSPER): A spatially continuous model of annual streamflow permanence throughout the Pacific Northwest. J. Hydrol. X 2, 100005 (2019).

    Article  Google Scholar 

  • 58.

    AdaptWest Project. Gridded current and future climate data for North America at 1 km resolution. (2015). https://adaptwest.databasin.org/pages/adaptwest-climatena. Accessed 5 Oct 2018.

  • 59.

    National Aeronautics and Space Administration (NASA). EarthData Search. (2020). https://search.earthdata.nasa.gov/search. Accessed 8 Jan 2017.

  • 60.

    Franklin, S. et al. Building the United States national vegetation classification. Ann. Bot. 2, 1–9 (2012).

    Google Scholar 

  • 61.

    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    ADS  Article  Google Scholar 

  • 62.

    Vogelmann, J. E., Tolk, B. & Zhu, Z. Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sens. Environ. 113, 1739–1748 (2009).

    ADS  Article  Google Scholar 

  • 63.

    De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).

  • 64.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Hijmans, R., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling, R package version 1.1–4. (2016). https://cran.r-project.org/web/packages/dismo/dismo.pdf. Accessed: 1 May 2017.

  • 66.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.r-project.org. Accessed 1 Feb 2017.

  • 67.

    Cartwright, J. Analysis of Drought Sensitivity in the Pacific Northwest (Washington, Oregon, and Idaho) from 2000 Through 2016: U.S. Geological Survey Data Release. (2019). https://doi.org/10.5066/P9UNYG2R. Accessed 6 Nov 2019.

  • 68.

    Omernik, J. & Griffith, G. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).

    ADS  Article  Google Scholar 

  • 69.

    U.S. Geological Survey. GAP/LANDFIRE National Terrestrial Ecosystems Dataset (2010). https://gapanalysis.usgs.gov/gaplandcover/featured-post-1/. Accessed 16 Mar 2017.

  • 70.

    U.S. Geological Survey. Global 30 arc-second elevation (GTOPO30). U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2015). https://lta.cr.usgs.gov/GTOPO30. Accessed 2 Mar 2018.

  • 71.

    Dobrowski, S. Z. et al. Climatic Water Balance and Velocity of Climate Change Data for the Contiguous US During the 20th Century. (2013). https://adaptwest.databasin.org/pages/adaptwest-waterbalance. Accessed 2 Mar 2018.

  • 72.

    Hengl, T. et al. SoilGrids1km-global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science (80-. ). 339, 940–943 (2013).

  • 74.

    Esri. ArcGIS Desktop. (2020). https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview. Accessed 8 Jan 2017.


  • Source: Ecology - nature.com

    The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems

    A sciaenid swim bladder with long skinny fingers produces sound with an unusual frequency spectrum