in

Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus

  • 1.

    Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 395–408 (2018).

    Article  CAS  Google Scholar 

  • 2.

    Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946–1955 (2012).

    PubMed Central  Article  PubMed  Google Scholar 

  • 3.

    Koureas, M., Tsakalof, A., Tsatsakis, A. & Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 210, 155–168 (2012).

    Article  CAS  Google Scholar 

  • 4.

    Peterson Robert, K. D., Macedo Paula, A. & Davis Ryan, S. A human-health risk assessment for West Nile Virus and insecticides used in mosquito management. Environ. Health Perspect. 114, 366–372 (2006).

    Article  CAS  Google Scholar 

  • 5.

    Han, W., Tian, Y. & Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere 192, 59–65 (2018).

    ADS  Article  CAS  Google Scholar 

  • 6.

    Hernández, A. F. et al. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307, 136–145 (2013).

    Article  CAS  Google Scholar 

  • 7.

    Sanchez-Bayo, F. P. Insecticides mode of action in relation to their toxicity to non-target organisms. J. Environ. Anal. Toxicol. s4, 002 (2012).

    Google Scholar 

  • 8.

    Rivero, A., Vézilier, J., Weill, M., Read, A. F. & Gandon, S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem?. PLoS Pathog. 6, e1001000 (2010).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 9.

    Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).

    Article  CAS  Google Scholar 

  • 10.

    Liu, N., Xu, Q., Zhu, F. & Zhang, L. Pyrethroid resistance in mosquitoes. Insect Sci. 13, 159–166 (2006).

    Article  CAS  Google Scholar 

  • 11.

    Dusfour, I. et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: advances and challenges. PLoS Negl. Trop. Dis. 13, e0007615 (2019).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 12.

    Faraji, A. & Unlu, I. The eye of the tiger, the thrill of the fight: effective larval and adult control measures against the Asian tiger mosquito, Aedesalbopictus (Diptera: Culicidae), in North America. J. Med. Entomol. 53, 1029–1047 (2016).

    Article  Google Scholar 

  • 13.

    Chan, K. L., Ho, B. C. & Chan, Y. C. Aedesaegypti (L.) and Aedesalbopictus (Skuse) in Singapore City. Bull. World Health Organ. 44, 629–633 (1971).

    PubMed Central  CAS  PubMed  Google Scholar 

  • 14.

    Sansinenea, E. Bacillusthuringiensis Biotechnology (Springer, New York, 2012).

    Google Scholar 

  • 15.

    Mulla, M. S., Darwazeh, H. A. & Zgomba, M. Effect of some environmental factors on the efficacy of Bacillussphaericus 2362 and Bacillusthuringiensis (H-14) against mosquitoes. Bull. Soc. Vector Ecol. 15, 166–175 (1990).

    Google Scholar 

  • 16.

    Marina, C. F., Arredondo-Jiménez, J. I., Castillo, A. & Williams, T. Sublethal effects of iridovirus disease in a mosquito. Oecologia 119, 383–388 (1999).

    ADS  Article  Google Scholar 

  • 17.

    Delhon, G. et al. Genome of invertebrate iridescent virus type 3 (mosquito iridescent virus). J. Virol. 80, 8439–8449 (2006).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 18.

    Linley, J. R. & Nielsen, H. T. Transmission of a mosquito iridescent virus in Aedestaeniorhynchus: I. Laboratory experiments. J. Invertebr. Pathol. 12, 7–16 (1968).

    Article  CAS  Google Scholar 

  • 19.

    Carlson, J., Suchman, E. & Buchatsky, L. Densoviruses for control and genetic manipulation of mosquitoes. In Advances in Virus Research, Vol. 68 361–392 (Academic Press, 2006).

  • 20.

    Johnson, R. M. & Rasgon, J. L. Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Curr. Opin. Insect Sci. 28, 90–97 (2018).

    Article  Google Scholar 

  • 21.

    Grenet, A.-S.G. et al. Les densovirus: une «massive attaque» chez les arthropodes. Virologie 19, 19–31 (2015).

    Google Scholar 

  • 22.

    Hewson, I. et al. Densovirus associated with sea-star wasting disease and mass mortality. Proc. Natl. Acad. Sci. 111, 17278–17283 (2014).

    ADS  Article  CAS  Google Scholar 

  • 23.

    Afanasiev, B. N., Galyov, E. E., Buchatsky, L. P. & Kozlov, Y. V. Nucleotide sequence and genornic organization of aedes densonucleosis virus. Virology 185, 323–336 (1991).

    Article  CAS  Google Scholar 

  • 24.

    Sivaram, A. et al. Isolation and characterization of densonucleosis virus from Aedes aegypti mosquitoes and its distribution in India. Intervirology 52, 1–7 (2009).

    Article  CAS  Google Scholar 

  • 25.

    Chen, S. et al. Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedesalbopictus C6/36 cell line. Virology 318, 123–133 (2004).

    Article  CAS  Google Scholar 

  • 26.

    Zhai, Y.-G. et al. Isolation and characterization of the full coding sequence of a novel densovirus from the mosquito Culexpipienspallens. J. Gen. Virol. 89, 195–199 (2008).

    Article  CAS  Google Scholar 

  • 27.

    Ren, X., Hoiczyk, E. & Rasgon, J. L. Viral Paratransgenesis in the malaria vector Anophelesgambiae. PLoS Pathog. 4, e1000135 (2008).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 28.

    Jousset, F.-X., Barreau, C., Boublik, Y. & Cornet, M. A Parvo-like virus persistently infecting a C6/36 clone of Aedesalbopictus mosquito cell line and pathogenic for Aedesaegypti larvae. Virus Res. 29, 99–114 (1993).

    Article  CAS  Google Scholar 

  • 29.

    Afanasiev, B. N. & Carlson, J. O. A new mosquito densovirus from Peru: genomic sequence and in vitro growth characteristics of wild type and hybrid viruses. (2003).

  • 30.

    O’Neill, S. L. et al. Insect densoviruses may be widespread in mosquito cell lines. J. Gen. Virol. 76, 2067–2074 (1995).

    Article  Google Scholar 

  • 31.

    Jousset, F.-X., Baquerizo, E. & Bergoin, M. A new densovirus isolated from the mosquito Culexpipiens (Diptera: Culicidae). Virus Res. 67, 11–16 (2000).

    Article  CAS  Google Scholar 

  • 32.

    Sangdee, K. & Pattanakitsakul, S. New genetic variation of Aedesalbopictus Densovirus isolated from mosquito C6/36 cell line. Southeast Asian J. Trop. Med. Public Health 43, 12 (2012).

    Google Scholar 

  • 33.

    Li, J. et al. A novel densovirus isolated from the asian tiger mosquito displays varied pathogenicity depending on its host species. Front. Microbiol. 10, 1549 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  • 34.

    Kittayapong, P., Baisley, K. J. & O’Neill, S. L. A mosquito densovirus infecting Aedesaegypti and Aedesalbopictus from Thailand. Am. J. Trop. Med. Hyg. 61, 612–617 (1999).

    Article  CAS  Google Scholar 

  • 35.

    Barreau, C., Jousset, F. X. & Bergoin, M. Venereal and vertical transmission of the Aedesalbopictus parvovirus in Aedesaegypti mosquitoes. Am. J. Trop. Med. Hyg. 57, 126–131 (1997).

    Article  CAS  Google Scholar 

  • 36.

    De Valdez, M. R. W., Suchman, E. L., Carlson, J. O. & Black, W. C. A Large Scale Laboratory Cage Trial of Aedes Densonucleosis Virus (AeDNV). J. Med. Entomol. 47, 392–399 (2010).

    Article  Google Scholar 

  • 37.

    Altinli, M. et al. Sharing cells with Wolbachia: the transovarian vertical transmission of Culexpipiens densovirus. Environ. Microbiol. 21, 3284–3298 (2019).

    Article  CAS  Google Scholar 

  • 38.

    Wei, W. et al. The pathogenicity of mosquito densovirus (C6/36DNV) and its interaction with dengue virus type II in Aedesalbopictus. Am. J. Trop. Med. Hyg. 75, 1118–1126 (2006).

    Article  Google Scholar 

  • 39.

    Bouyer, J., Chandre, F., Gilles, J. & Baldet, T. Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed. Lancet Glob. Health 4, e364 (2016).

    Article  Google Scholar 

  • 40.

    Barreau, C., Jousset, F.-X. & Bergoin, M. Pathogenicity of the Aedesalbopictus parvovirus (AaPV), a denso-like virus, for Aedes aegypti mosquitoes. J. Invertebr. Pathol. 68, 299–309 (1996).

    Article  CAS  Google Scholar 

  • 41.

    Barreau, C., Jousset, F.-X. & Cornet, M. An efficient and easy method of infection of mosquito larvae from virus-contaminated cell cultures. J. Virol. Methods 49, 153–156 (1994).

    Article  CAS  Google Scholar 

  • 42.

    Igarashi, A. Isolation of a Singh’s Aedesalbopictus cell clone sensitive to dengue and chikungunya viruses. J. Gen. Virol. 40, 531–544 (1978).

    Article  CAS  Google Scholar 

  • 43.

    Brackney, D. E. et al. C6/36 Aedesalbopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl. Trop. Dis. 4, e856 (2010).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 44.

    Ostfeld, R. S. & Keesing, F. Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012).

    Article  Google Scholar 

  • 45.

    Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).

    PubMed Central  Article  PubMed  Google Scholar 

  • 46.

    Ledermann, J. P., Suchman, E. L., Black, W. C. & Carlson, J. O. Infection and pathogenicity of the mosquito densoviruses AeDNV, HeDNV, and APeDNV in Aedesaegypti mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 97, 1828–1835 (2004).

    Article  Google Scholar 

  • 47.

    Hirunkanokpun, S., Carlson, J. O. & Kittayapong, P. Evaluation of mosquito densoviruses for controlling Aedesaegypti (Diptera: Culicidae): variation in efficiency due to virus strain and geographic origin of mosquitoes. Am. J. Trop. Med. Hyg. 78, 784–790 (2008).

    Article  CAS  Google Scholar 

  • 48.

    Ogoyi, D. O. et al. Linkage and mapping analysis of a non-susceptibility gene to densovirus (nsd-2) in the silkworm, Bombyxmori. Insect Mol. Biol. 12, 117–124 (2003).

    Article  CAS  Google Scholar 

  • 49.

    Watanabe, H. & Maeda, S. Genetically determined nonsusceptibility of the silkworm, Bombyxmori, to infection with a densonucleosis virus (Densovirus). J. Invertebr. Pathol. 38, 370–373 (1981).

    Article  Google Scholar 

  • 50.

    Rudolf, V. H. W. & Antonovics, J. Disease transmission by cannibalism: rare event or common occurrence?. Proc. R. Soc. B Biol. Sci. 274, 1205–1210 (2007).

    Article  Google Scholar 

  • 51.

    Parry, R., Bishop, C., De Hayr, L. & Asgari, S. Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs. Virology 528, 89–100 (2019).

    Article  CAS  Google Scholar 

  • 52.

    Rwegoshora, R. T., Baisley, K. J. & Kittayapong, P. Seasonal and spatial variation in natural densovirus infection in Anophelesminimus s.l. in Thailand. Southeast Asian J. Trop. Med. Public Health 31, 7 (2000).

    Google Scholar 

  • 53.

    Clements, A. N. The biology of mosquitoes: sensory reception and behaviour. Behaviour and aspects of the biology of larvae (1999).

  • 54.

    Hajek, A. E. & Shapiro-Ilan, D. I. Ecology of Invertebrate Diseases (Wiley, New York, 2018).

    Google Scholar 

  • 55.

    Ren, X. & Rasgon, J. L. Potential for the Anophelesgambiae densonucleosis virus to act as an “evolution-proof” biopesticide. J. Virol. 84, 7726–7729 (2010).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 56.

    Buchatsky, L. P. Densonucleosis of blood sucking mosquitoes. Dis. Aquat. Organ. 6, 145–150 (1989).

    Article  Google Scholar 

  • 57.

    Brengues, C. et al. Pyrethroid and DDT cross-resistance in Aedesaegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med. Vet. Entomol. 17, 87–94 (2003).

    Article  CAS  Google Scholar 

  • 58.

    Boublik, Y., Jousset, F.-X. & Bergoin, M. Complete nucleotide sequence and genomic organization of the Aedesalbopictus parvovirus (AaPV) pathogenic for Aedesaegypti larvae. Virology 200, 752–763 (1994).

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century